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Preface

This lecture course is devoted to the special part the statistical mechanics which deals with the
classical spin systems with quenched disorder. The course is assumed to be of the pedagogical character,
and it aims to make the reader to get into the subject starting from fundamentals. The course
is supposed to be selfcontained (it is not required to go through all the references to understand
something) being understandable for any student having basic knowledge in theoretical physics and
statistical mechanics.

The first part of the course is devoted to the physics of spin-glass systems, where the quenched
disorder is the dominant factor. The emphasis is made on a general qualitative description of the
physical phenomena, being mostly based on the results obtained in the framework of the mean-field
theory of spin-glasses with long-range interactions [1,2]. First, the general problems of the spin-glass
state are discussed at the qualitative level. In Chapters 3-5 the ”magic” of the replica symmetry
breaking (RSB) scheme is explained in details, and the physics behind it is discussed. This part also
contains the detailed derivation of the ultrametric structure of the space of the spin-glass states as well
as its scaling properties. Chapter 6 is devoted to the series of recent experiments on real spin-glass
materials, which on a qualitative level confirm the basic theoretical predictions.

The second part of the course is mainly devoted to theory of the critical phenomena at the phase
transitions of the second order in the presence of weak quenched disorder [24]. Theory of the critical
phenomena deals with macroscopic statistical systems in a close vicinity of the phase transition point
where spontaneous symmetry breaking takes place, and the situation is characterized by large-scale
fluctuations. According to the traditional scaling theory of the second-order phase transitions the
large-scale fluctuations are characterized by certain dominant scale, or the correlation length, Rc. The
correlation length grows as the critical point is approached, where it becomes infinite. The large-scale
fluctuations lead to singularities in the macroscopic characteristics of the system as a whole. These
singularities are the main subject of the theory. Chapter 7 is devoted to the systematic consideration
of the traditional renormalization-group (RG) theory of the critical phenomena, including ε-expansion
[25].

Originally, many years ago, it was generally believed that quenched disorder either completely
destroy the long range fluctuations, such that the singularities of the thermodynamical functions are
getting smoothed out, or it can produce only a shift of the critical point but cannot effect the critical
behavior itself. Later it was realized that intermediate situation is also possible, in which a new critical
behavior, with new universal critical exponents, is established sufficiently close to the phase transition
point. In terms of the RG approach the standard procedure for obtaining a new universal ”disordered”
critical regime for the vector ferromagnetic spin systems is considered in Chapter 8.

However, according to the recent developments in this field, the effects of the quenched disorder
on the critical behaviour could appear to be more complicated, and in certain cases completely new
type of the critical phenomena of the spin-glass nature could be established in the close vicinity of the
critical point. In Chapter 9 the RG theory for the vector ferromagnetic spin systems is generalized to
take into account the non-perturbative spin-glass type phenomena. It is demonstrated that whenever
the disorder is relevant for the critical behavior there exists no stable fixed points, and the RG flows
lead to the so called strong coupling regime at a finite spatial scale. The physical consequences of the
obtained RG solutions are discussed.

In Chapter 10 we consider the critical properties of the two-dimensional disordered Ising model. In
terms of the Fermion fields formalism the exact solution for the critical behavior of the specific heat is
derived, and the phase diagram as well as the results of the recent numerical simulations are discussed.

Finally, in Chapter 11 the Ising spin systems with quenched random fields are considered. The
statistical systems of this type exhibit qualitatively different properties compared to those considered
before. The random field Ising models are of special interest for two reasons. First, because they
have many experimentally accessible realizations, and second, because despite extensive theoretical
and experimental efforts during last twenty years very little is understood about their basic properties
even at the qualitative level.

1



.

CONTENTS:

1 Introduction
1.1 General Principles of Statistical Mechanics . . . . 4
1.2 Mean-Field Approximation . . . . 6
1.3 Quenched Disorder, Selfaveraging and the Replica Method . . . . 8

Part I. Spin-Glass Systems

2 Physics of the Spin Glass State
2.1 Frustrations . . . . 11
2.2 Ergodicity Breaking . . . . 12
2.3 Continuous Sequence of Phase Transitions . . . . 13
2.4 Order Parameter . . . . 14
2.5 Ultrametricity . . . . 15

3 The Mean-Field Theory of Spin Glasses
3.1 Infinite Range Interaction Model . . . . 16
3.2 Replica-Symmetric Solution . . . . 16
3.3 Replica Symmetry Breaking . . . . 19
3.4 Parisi Algebra . . . . 22
3.5 Replica Symmetry Breaking Solution Near Tc . . . . 23

4 Physics of the Replica Symmetry Breaking
4.1 Pure States . . . . 25
4.2 Physical Order Parameter and the Replica Solution . . . . 26

5 Ultrametricity
5.1 Ultrametric Structure of the Pure States . . . . 29
5.2 Tree of States . . . . 30
5.3 Scaling in the Space of the Spin-Glass States . . . . 33
5.4 Phenomenological Dynamics . . . . 34

6 Experiments
6.1 Aging . . . . 35
6.2 Temperature Cycles and the Hierarchy of States . . . . 35
6.3 Temperature Dependence of the Energy Barriers . . . . 37

2



.

Part II. Critical Phenomena and Quenched Disorder

7 Scaling Theory of the Critical Phenomena
7.1 Ginzburg-Landau Theory . . . . 39
7.2 Critical Exponents . . . . 42
7.3 Scaling . . . . 44
7.4 Renormalization-Group Approach and ε-expansion . . . . 46
7.5 Specific Heat Singularity in Four Dimensions . . . . 50

8 Critical Behavior in Systems with Disorder
8.1 Harris Criterion . . . . 51
8.2 Critical Exponents in the φ4-theory with Disorder . . . . 53
8.3 Critical Behaviour of the Specific Heat in Four Dimensions . . . . 56

9 Spin-Glass Effects in the Critical Phenomena
9.1 Nonperturbative Degrees of Freedom . . . . 57
9.2 Replica Symmetry Breaking in the RG Theory . . . . 60
9.3 Scaling Properties and the Replica Symmetry Breaking . . . . 63
9.4 Discussion . . . . 69

10 Two-Dimensional Ising Model with Disorder
10.1 Two-Dimensional Ising Systems . . . . 63
10.2 Fermion Solution . . . . 71
10.3 Critical Behavior in the Disordered Model . . . . 75
10.4 Numerical Simulations . . . . 79
10.5 General Structure of the Phase Diagram . . . . 80

11 Ising Systems with Quenched Random Fields
11.1 The Model . . . . 83
11.2 General Arguments . . . . 84
11.3 Griffith Singularities in the Low Temperature Phase . . . . 85
11.4 Phase Transition . . . . 89

12 Conclusions . . . . 91

3



1 INTRODUCTION

1.1 General principles of the statistical mechanics

In the most simple terms the basic statements of the statistical mechanics can be introduced in the
following way. Let the microscopic state of a macroscopic system having many degrees of freedom is
described by the configurations of N variables {si}, (i = 1, 2, ..., N). The basic quantity characterizing
the microscopic states is called the energy H, and it is defined as a function of all the microscopic
variables {si}:

H = H(s1, s2, ..., sN ) ≡ H[s]

The microscopic dynamic behavior of the system is defined by some dynamic differential equations
such that, in general, the energy of the system tends to a minimum. Besides, it is assumed that no
observable system can be perfectly isolated from the surrounding world, and the effect of the interaction
with the surroundings (the thermal bath) is believed to produce the so called, thermal noise in the
exact dynamical equations. The thermal (white) noise acts as random and uncorrelated fluctuations
which produces the randomization and the mixing of the exact dynamical trajectories of the system.

Let A[s] be some observable quantity. The quantities, which are of interest in the statistical
mechanics, are the averaged values of the observables. In other words, instead of studying the exact
evolution in time of the value A[s(t)], one introduces the averaged quantity:

〈A〉 = lim
t→∞

1
t

∫ t

0

dt′A[s(t′)] (1.1)

which could be formally obtained after the observation during infinite time period.
The fundamental hypothesis of the equilibrium statistical mechanics lies in the following. It is

believed that, owing to the mixing of the dynamic trajectories, after an infinitely long observation time
the system in general, ”visits” its different microscopic states many times, and therefore the averaged
quantity in Eq.(1.1) could be obtained by averaging over the ensemble of the states instead of that
over the time:

〈A〉 =
∫
ds1ds2...dsNA[s]P (s1, s2, ..., sN ) (1.2)

Here P [s] is the probability distribution function of the microscopic states of the system. In other
words, it is believed, that because of the mixing of the dynamic trajectories, instead of solving the exact
dynamics, the system could be statistically described in terms of the probabilities of its microscopic
states given by the function P [s]. The probability distribution function, whatever it is, must be
normalized: ∫

ds1ds2...dsNP (s1, s2, ..., sN ) = 1 (1.3)

The fundamental quantity of the statistical mechanics which characterizes the probability distri-
bution itself is called the entropy. It is defined as the average of the logarithm of the distribution
function:

S = −〈log(P [s])〉 ≡ −
∫
ds1ds2...dsNP [s] log(P [s]) (1.4)

First of all, it obvious from the above definition, that because of the normalization (1.3), the entropy
is at least non-negative. In general, the value of the entropy could tell to what extent the state of
the system is ”ordered”. Consider a simple illustrative example. Let the (discrete) microscopic states
of the system be labeled by an index α, and let us assume that the probability distribution is such
that only L (among all) states have non-zero and equal probability. Then, due to the normalization
(1.3), the probability of any of these L states must be equal to 1/L. According to the definition of the
entropy, one gets:

S = −
L∑
α

Pα logPα = logL
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Therefore, the broader distribution (the larger L), the larger value of the entropy. On the other hand,
the more concentrated the distribution function is, the smaller value of the entropy. In the extreme
case, when there is only one microscopic state occupied by the system, the entropy is equal to zero.
In general, the value of exp(S) could be interpreted as the averaged number of the states occupied by
the system with finite probability.

Now let us consider, what the general form of the probability distribution function must be. Ac-
cording to the basic hypothesis, the average value of the energy of the system is:

E ≡ 〈H〉 =
∑
α

PαHα (1.5)

The interaction of the system with the surrounding world produces the following fundamental effects.
First, the averaged value of its energy in the thermal equilibrium is conserved. Second, for some reasons
Nature is constructed in such a way that irrespective of the internal structure of the system, the value
of the entropy in the equilibrium state tries to attain a maximum (bounded by the condition that the
average energy is constant). In a sense, it is natural: random noise makes the system as disordered as
possible. Let us now consider, the form of the probability distribution function, which would maximize
the entropy. To take into account the two constraints - the conservation of the average energy, Eq.(1.5),
and the normalization

∑
α Pα = 1 - one can use the method of the Lagrange multipliers. Therefore,

the following expression must be maximized with respect to all possible distributions Pα:

Sβ,γ [P ] = −
∑
α

Pα log(Pα)− β(
∑
α

PαHα − E)− γ(
∑
α

Pα − 1) (1.6)

where β and γ are the Lagrange multipliers. Variation with respect to Pα gives:

Pα =
1
Z

exp(−βHα) (1.7)

where

Z =
∑
α

exp(−βHα) = exp(γ + 1) (1.8)

is called the partition function, and the parameter β, which is called the inverse temperature, is defined
by the condition:

1
Z

∑
α

Hα exp(−βHα) = E (1.9)

In practice, however, it is the temperature which is usually taken as an independent parameter, whereas
the average energy is obtained as the function of the temperature by Eq.(1.9).

The other fundamental quantity of the statistical mechanics is the free energy defined as follows:

F = E − TS (1.10)

where T = 1/β is the temperature. Using the Eq.(1.7), one can easily derive the following basic
relations among the free energy, the partition function, the entropy and the average energy:

F = −T log(Z) (1.11)

S = β2 ∂F

∂β
(1.12)

E = − ∂

∂β
log(Z) = F + β

∂F

∂β
(1.13)

Note, that according to the definition given by Eq.(1.10), the principle of maximum of entropy is
equivalent to that of the minimum of the free energy. One can easily confirm, that taking the free
energy (instead of the entropy) as the fundamental quantity which must be minimal with respect to
all possible distribution functions, the same form of the probability distribution as given by Eq.(1.7)
is obtained.
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1.2 The mean-field approximation

In magnetic materials the microscopic state of the system is supposed to be defined by the values of
the local spin magnetizations. In many magnetic materials the electrons responsible for the magnetic
behavior are localized near the atoms of the crystal lattice, and the force which tends to orient the
spins is the (short range) exchange interaction.

The most popular models, which describe this situation qualitatively are called the Ising models.
The microscopic variables in these systems are the Ising spins σi which by definition can take only two
values +1 or −1. The traditional form for the microscopic energy (which from now on will be called
the Hamiltonian) as the function of all the Ising spins is in the following:

H = −
∑
<i,j>

Jijσiσj − h
∑
i

σi (1.14)

Here the notation < i, j > indicates the summation over all the lattice sites of the nearest neighbors,
Jij are the values of the spin-spin interactions, and h is the external magnetic field. If all the Jij ’s are
equal to a positive constant, then one gets the ferromagnetic Ising model, and if all the Jij ’s are equal
to a negative constant, then one gets the antiferromagnetic Ising model.

In spite of the apparent simplicity of the Ising model, an exact solution (which means the calculation
of the partition function and the correlation functions) has been found only for the one- and the two-
dimensional systems in the zero external magnetic field. In all other cases one needs to use approximate
methods. One of the simplest methods is called the mean-field approximation. In many cases this
method gives the results which are not too far from the correct ones, and very often it makes possible
to get some qualitative understanding of what is going on in the system under consideration.

The starting point of the mean-field approximation is the assumption about the structure of the
probability distribution function. It is assumed that the distribution function in the equilibrium state
can be factorized as the product of the independent distribution functions in the lattice sites:

P [σ] =
1
Z

exp(−βH[σ]) '
∏
i

Pi(σi) (1.15)

The normalized site distribution functions are taken in the form:

Pi(σi) =
1 + φi

2
δ(σi − 1) +

1− φi
2

δ(σi + 1) (1.16)

where φi are the parameters which have to be specified.
The factorization of the distribution function, Eq.(1.15), means that the average of any product of

any functions at different sites is also factorizing on the product of the independent averages:

< f(σi)g(σj) > = < f(σi) >< g(σj) > (1.17)

where, according to the ansatz (1.15):

< f(σi) > =
1 + φi

2
f(1) +

1− φi
2

f(−1) (1.18)

In particular, for the average site magnetizations, one easily gets:

< σi > = φi (1.19)

Therefore, the physical meaning of the parameters {φi} in the trial distribution function is that they
describe the average site spin magnetizations. According to the general principles of the statistical
mechanics, these parameters must be such that they would minimize the free energy of the system.

Using Eqs.(1.15) and (1.16) for the entropy and for the average energy, one gets:

S = − < log(P [σ]) > ' −
∑
i < log(Pi(σi)) > =

= −
∑
i[

1+φi
2 log(1+φi

2 ) + 1−φi
2 log(1−φi

2 )
(1.20)
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E = −1
2

∑
<i,j>

Jijφiφj − h
∑
i

φi (1.21)

For the free energy, Eq.(1.10), one obtains:

F = − 1
2

∑
<i,j> Jijφiφj − h

∑
i φi +

+T
∑
i[

1+φi
2 log(1+φi

2 ) + 1−φi
2 log(1−φi

2 )]
(1.22)

To be more specific, consider the ferromagnetic system on the D-dimensional cubic lattice. In this
case all the spin-spin couplings are equal to some positive constant: Jij = 1

2DJ > 0, (the factor 1
2D is

inserted just for convenience) and each site has 2D nearest neighbors. Since the system is homogeneous,
it is natural to expect that all the φi’s must be equal to some constant φ. Then, for the free energy
(1.22) one gets:

F
V ≡ f(φ) = − 1

2Jφ
2 − hφ +

+T [ 1+φ
2 log(1+φ

2 ) + 1−φ
2 log(1−φ

2 )]
(1.23)

where V is the volume of the system and f is the density of the free energy.
The necessary condition for the minimum of f is

df(φ)
dφ

= 0

or:

−Jφ − h + T arctanh(φ) = 0 (1.24)

The resulting equation, which defines the order parameter φ is:

φ = tanh[β(Jφ+ h)] (1.25)

Note, that the minimum of the free energy is conditioned by d2f
dφ2 > 0. Using Eq.(1.24), this condition

can be reduced to

1
1− φ2

> βJ (1.26)

Consider first the case of a zero external magnetic field (h = 0). One can easily see that if
T > Tc = J , the only solution of the Eq.(1.25): φ = tanh(βJφ) is φ = 0, and this solution satisfies
the condition (1.26). Therefore, at all temperatures higher than Tc the minimum of the free energy is
achieved in the state in which all the site spin magnetizations are zeros.

However, if T < Tc, then in addition to the solution φ = 0 Eq.(1.25) (with h = 0) has two non-trivial
solutions φ = ±φ(T ) 6= 0. One can easily check that in this temperature region the solution φ = 0
becomes maximum and not the minimum of the free energy, while the true minima are achieved at
φ = ±φ(T ). Therefore, in the low temperature region T < Tc the free energy has two minima, which
are characterized by non-zero site magnetizations with opposite signs.

Near Tc the magnetization φ(T ) is small. In this case the expansion in powers of φ in Eq.(1.25)
can be made. In the leading order in τ ≡ (T/Tc − 1), |τ | � 1 one gets:

φ(T ) = const |τ |1/2, (τ < 0) (1.27)

Thus, as T → Tc from below, φ(T )→ 0. The expansion of the free energy Eq.(1.23) as the function of
small value of φ yields:

f(φ) =
1
2
τφ2 +

1
4
gφ4 − hφ (1.28)

where g = T/3 and for simplicity we have taken J = 1. The qualitative shapes of f(φ) at T > Tc (τ > 0)
and at T < Tc (τ < 0) are shown in Fig.1. Note, that since the total free energy F is proportional to
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the volume of the system, the value of the free energy barrier separating the states with φ = ±φ(T )
at T < Tc is also proportional to the volume of the system. Therefore, in the thermodynamic limit
V → ∞ (which corresponds to the consideration of the macroscopic systems) the barrier separating
the two states is getting infinite.

The simple considerations described above demonstrate on a qualitative level the fundamental
phenomenon called spontaneous symmetry breaking. At the temperature T = Tc the phase transition
of the second order occurs, such that in the low temperature region T < Tc the symmetry with respect
to the global change of the signs of the spins is broken, and the two (instead of one) ground states
appear. These two states differ by the sign of the average spin magnetization, and they are separated
by the macroscopic barrier of the free energy.

1.3 Quenched Disorder, Selfaveraging and the Replica Method

In this lecture course we will consider the thermodynamical properties of various spin systems which
are characterized by the presence of some kind of a quenched disorder in the spin-spin interactions. In
realistic magnetic materials such disorder can exists, e.g. due to the oscillating nature of the exchange
spin-spin interactions combined with the randomness in the positions of the interacting spins (such
as in metallic spin-glass alloys AgMn), or due to defects in the lattice structure, or because of the
presence of impurities, etc.

Since we will be mostly interested in the qualitative effects produced by the quenched disorder,
the details of the realistic structure of such magnetic systems will be left aside. Here we will be
concentrated on the extremely simplified model description of the disordered spin systems.

In what follows we will consider two essentially different types of the disordered magnets. First,
we will study the thermodynamic properties of spin systems in which the disorder is strong. The term
”strong disorder” refers to the situation when the disorder appears to be the dominant factor for the
ground state properties of the system, so that it dramatically changes the low-temperature properties
of the magnetic system as compared to the usual ferromagnetic phase. This type of systems, usually
called the spin-glasses, will be considered in the first part of the course.

In the second part of the course we will consider the properties of weakly disordered magnets. This
is the case when the disorder does not produce notable effects for the ground state properties. It will be
shown however, that in certain cases even small disorder can produce dramatic effects for the critical
properties of the system in a close vicinity of the phase transition point.

The main problem in dealing with disordered systems is that the disorder in their interaction
parameters is quenched. Formally, all the results one may hope to get for the observable quantities
for a given concrete system, must depend on the concrete interaction matrix Jij , i.e. the result would
be defined by a macroscopic number of random parameters. Apparently, the results of this type
are impossible to calculate, and moreover, they are useless. Intuitively it is clear, however, that the
quantities which are called the observables should depend on some general averaged characteristics of
the random interactions. This brings us to the concept of the selfaveraging.

Traditional way of speculations, why the selfaveraging phenomenon should be expected to take
place, is as follows. The free energy of the system is known to be proportional to the volume V of
the system. Therefore, in the thermodynamic limit V → ∞ the main contribution to the free energy
must come from the volume, and not from the boundary, which usually produces the effects of the
next orders in the small parameter 1/V . Any macroscopic system could be divided into macroscopic
number of macroscopic subsystems. Then the total free energy of the system would consist of the sum
of the free energies of the subsystems, plus the contribution which comes from the interactions of the
subsystems, at their boundaries. If all the interactions in the system are short range (which takes
place in any realistic system), then the contributions from the mutual interactions of the subsystems
are just the boundary effects which vanish in the thermodynamic limit. Therefore, the total free
energy could be represented as a sum of the macroscopic number of terms. Each of these terms would
be a random quenched quantity since it contains, as the parameters, the elements of the random
spin-spin interaction matrix. In accordance with the law of large numbers, the sum of many random
quantities can be represented as their average value, obtained from their statistical distribution, times
their number (all this is true, of course, only under certain requirements on the characteristics of the
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statistical distribution). Therefore, the total free energy of a macroscopic system must be selfaveraging
over the realizations of the random interactions in accordance with their statistical distribution.

The free energy is known to be given by the logarithm of the partition function. Thus, in order to
calculate the observable thermodynamics one has to average the logarithm of the partition function
over the given distribution of random Jij ’s after the calculation of the partition function itself. To
perform such a program the following technical trick, which is called the replica method, is used.

Formally, the replicas are introduced as follows. In order to obtain the physical (selfaveraging) free
energy of the quenched random system we have to average the logarithm of the partition function:

F ≡ FJ = − 1
β

ln(ZJ) (1.29)

where (...) denotes the averaging over random interactions {Jij} with a given distribution function
P [J ]:

(...) ≡ (
∏
<i,j>

∫
dJij)P [J ](...) (1.30)

and the partition function is

ZJ =
∑
σ

exp{−βH[J, σ]} (1.31)

To perform this procedure of the averaging, the following trick is invented. Let us consider the integer
power n of the partition function (1.31). This quantity is the partition function of the n non-interacting
identical replicas of the original system (i.e. having identical fixed spin-spin couplings Jij):

ZnJ = (
n∏
a=1

∑
σa

) exp{−β
n∑
a=1

H[J, σa]} (1.32)

Here the subscript a labels the replicas. Let us introduce the quantity:

Fn = − 1
βn

ln(Zn) (1.33)

where

Zn ≡ ZnJ (1.34)

Now, if a formal limit n→ 0 would be taken in the expression (1.33), then the original expression for
the physical free energy (1.29) will be recovered:

limn→0 Fn = − limn→0
1
βn ln(Zn) = − limn→0

1
βn ln[exp{nlnZJ}] =

− 1
β lnZJ = F

(1.35)

Thus, the scheme of the replica method can be described in the following steps. First, the quantity
Fn for the integer n must be calculated. Second, the analytic continuation of the obtained function of
the parameter n should be made for an arbitrary non-integer n. Finally, the limit n → 0 has to be
taken.

Although this procedure may look rather doubtful at first, actually it is not so creasy. First, if the
free energy appears to be an analytic function of the temperature and the other parameters (so that
it can be represented as the series in powers of β), then the replica method can be easily proved to be
correct in a strict sense. Second, in all cases, when the calculations can be performed by some other
method, the results of the replica method are confirmed.

One could also introduce replicas in the other way [2],[20],[21]. Let us consider a general spin
system described by some Hamiltonian H[J ;σ], which depends on the spin variables {σi} and the
spin-spin interactions Jij (the concrete form of the Hamiltonian is irrelevant). If the interactions Jij
are quenched, the free energy of the system would depend on the concrete realization of the Jij ’s:
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F [J ] = − 1
β

log(ZJ) (1.36)

Now, let us assume that the spin-spin interactions are partially annealed (i.e. not perfectly quenched),
so that they can also change their values, but the characteristic time scale of their changes is much
larger than the time scale at which the spin degrees of freedom reach the thermal equilibrium. In this
case the free energy given by (1.36) would still make sense, and it would become the energy function
(the Hamiltonian) for the degrees of freedom of Jij ’s.

Besides, the space in which the interactions Jij take their values should be specified separately.
The interactions Jij ’s could be discrete variables taking values ±J0, or they could be the continuous
variables taking values in some restricted interval, or they could be something else. In the quenched
case this space of Jij values is defined by a statistical distribution function P [J ]. In the case of the
partial annealing this function P [J ] has a meaning of the internal potential for the interactions Jij ,
which restricts the space of their values.

Let us now assume, that the spin and the interaction degrees of freedom are not thermally equi-
librated, so that the degrees of freedom of the interactions have their own temperature T ′, which is
different from the temperature T of the spin degrees of freedom. In this case for the total partition
function of the system one gets:

Z =
∫
DJP [J ] exp(−β′F [J ]) =∫

DJP [J ] exp(β
′

β logZJ) =∫
DJP [J ](ZJ)n ≡ (ZJ)n

(1.37)

where n = T/T ′. Correspondingly, the total free energy of the system would be:

F = −T ′ log[(Z[J ])n] (1.38)

In this way we have arrived to the replica formalism again, in which the ”number of replicas” n = T/T ′

appears to be the finite parameter.
To obtain the physical (selfaveraging) free energy in the case of the quenched random Jij ’s one

takes the limit n → 0. From the point of view of the partial annealing, this situation corresponds to
the limit of the infinite temperature T ′ in the system of Jij ’s. This is natural in a sense that in this
case the thermodynamics of the spin degrees of freedom produces no effect on the distribution of the
spin-spin interactions.

In the case when the spin and the interaction degrees of freedom are thermally equilibrated, T ′ = T
(n = 1), we arrive at the trivial case of the purely annealed disorder, irrespective of the difference
between the characteristic time scales of the Jij interactions and the spins. This is also natural because
the thermodynamic description formally corresponds to the infinite times, and the characteristic time
scales of the dynamics of the internal degrees of freedom become irrelevant. If n 6= 0 and n 6= 1,
one gets the situation, which could be called the partial annealing, and which is the intermediate case
between quenched disorder and annealed disorder.

10



Part I. SPIN-GLASS SYSTEMS

2 Physics of the Spin Glass State

Before starting doing detailed calculations, first it would be useful to get qualitative understanding
of the general physical phenomena taking place in statistical mechanics of spin systems with strong
quenched disorder. Therefore, in this Chapter we will discuss the problem of spin glass state only in
simple qualitative terms.

2.1 Frustrations

There are exists quite a few statistical models of spin glasses. Here we will be concentrated on one
of the simplest models which can be formulated in terms of the classical Ising spins, described by the
following Hamiltonian:

H = −1
2

N∑
i 6=j

Jijσiσj (2.1)

This system consists of N Ising spins {σi} (i = 1, 2, ..., N), taking values ±1 which are placed in the
vertices of some lattice. The spin-spin interactions Jij are random in their values and signs. The
properties of such system are defined by the statistical distribution function P [Jij ] of the spin-spin
interactions. For the moment, however, the concrete form of this distribution will not be important.
The motivation for the Hamiltonian (2.1) from the point of view of realistic spin-glass systems is well
described in the review [3].

The crucial phenomena revealed by strong quenched disorder, which makes such type of systems
so hard to study, is in the following. Consider the system of three interacting spins (Fig.2). Let us
assume for simplicity, that the interactions among them can be different only in their signs being equal
in the absolute value. Then for the ground state of such system we can find two essentially different
situations.

If all three interactions J12, J23 and J13 are positive, or two of them are negative while the third one
is positive, then the ground state of this three spin system is unique (except for the global change of
signs of all the spins) (Fig.2a). This is the case when the product of the interactions along the triangle
is positive.

However, if the product of the interactions along the triangle is negative (one of the interactions
is negative, or all three interactions are negative, Fig.2b), then the ground state of such a system
is degenerate. One can easily check, going from spin to spin along the triangle, that in this case the
orientation (”plus” or ”minus”) of one of the spins remains ”unsatisfied” with respect to the interactions
with its neighbors.

One can also easily check that similar phenomenon takes place in any closed spin chain of arbitrary
length, provided that the product of the spin-spin interactions along the chain is negative. This
phenomenon is called frustration1[4].

One can easily see that not any disorder induces frustrations. On the other hand, it is the frustra-
tions, which describe the relevant part of the disorder, and which essentially effect the ground state
properties of the system. In other words, if the disorder does not produce frustrations, it can be
considered as being irrelevant. In some cases an irrelevant disorder can be just removed by a proper
redefinition of the spin variables of the system. A simple example of this situation is illustrated by
the so-called Mattice magnet. This is also formally disordered spin system, which is described by the
Hamiltonian (2.1), where the spin-spin interactions are defined as follows: Jij = ξiξj , and the quenched
ξi’s are taking values ±1 with equal probability. In such system the interactions Jij are also random in
signs, although one can easily check that with such concrete definition of the random interactions no

1This term is quite adequate in its literal meaning, since the triangle discussed above might as well be interpreted
as the famous love triangle. Besides, the existence of frustrations in spin glasses breaks any hope for finding a simple
solution of the problem.
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frustrations appear in the system. Moreover, after simple redefinition of the spin variables: σi → σiξi,
an ordinary ferromagnetic Ising model will be recovered. Thus, this type of disorder (it is called the
Mattice disorder) is actually fictitious for the thermodynamic properties of the system.

It is crucial that the ”true” disorder with frustrations can not be removed by any transformation
of the spin variables. Since in a macroscopic spin system, in general, one can draw a lot of different
frustrated closed spin chains, the total number of frustrations must be also macroscopically large. This,
in turn, would either result in a tremendous degeneracy of the ground state, or, in general, it could
produce a lot of low-lying states with the energies very close to the ground state. In particular, in the
Ising spin glass described by the Hamiltonian (2.1) the total number of such states is expected to be
of the order of exp(λN) (where λ < ln2 is a numerical factor), while the total amount of states in this
system is equal to 2N = exp[(log 2)N ].

2.2 Ergodicity breaking

Formally, according to the general selfaveraging arguments (Section 1.3), to derive the observable
thermodynamics of a disordered spin system one has to find a way for averaging the logarithm of the
partition function over random parameters Jij simultaneously with the calculation of the partition
function itself. It is clear that this problem is not easy, but nevertheless, at the level of such type of
very general speculations it looks as if it is just a technical problem (well, presumably very hard one),
and not more than that. Actually, for spin-glass type of systems this is not just the technical problem.
To realize this, let us consider again a few general points of the statistical mechanics.

Everything would be rather simple if the free energy in the thermodynamic limit would be an
analytic function of the temperature and the other parameters. Actually for most of non-trivial systems
which are of interest in the statistical mechanics this is not so. Very often due to spontaneous breaking
of some kind of a symmetry in the thermodynamic limit there exist a phase transition in the system
under consideration, and this makes the free energy to be a non-analytic function of the parameters
involved.

Let us consider again the ordinary ferromagnetic Ising model (Chapter 1) which in very simple
terms illustrates the physical consequences of this phenomenon. Since the Hamiltonian of this system
is invariant with respect to the global change of the signs of all the spins, any thermodynamic quantity
which is odd in spins must be identically equal to zero. In particular, this must be true for the quantity
which describes the global magnetization of the system. If the volume N of the system is finite these
arguments are indeed perfectly correct. However, in the thermodynamic limit N → ∞ we are facing
rather non-trivial situation. According to simple calculations performed in Section 1.2 the free energy
as function of the global magnetization acquires the double-well shape (Fig.1) at low temperatures. The
value of the energy barrier separating the two ground states is proportional to the volume of the system,
and it is getting infinite in the limit N → ∞. In other words, at temperatures below Tc the space of
all microscopic states of the system is getting to be divided into two equal valleys separated by the
infinite barrier. On the other hand, according to the fundamental ergodic hypothesis of the statistical
mechanics (Section 1.1) it is assumed that in the limit of infinite observation time the system (following
its internal dynamics) visits all its microscopic states many times, and it is this assumption which makes
possible to apply the statistical mechanical approach: for the calculation of the averaged quantities we
use averaging over the ensemble of states with the corresponding probability distribution instead of that
over the time. In the situation under consideration, when the thermodynamic limit N → ∞ is taken
before the observation time goes to infinity (it is this order of limits which corresponds to the adequate
statistical mechanical description of a macroscopic system) the above ergodic assumption simply does
not work. Whatever the (reasonable) internal dynamics of the system is, it could never makes possible
to jump over the infinite energy barrier separating the two valleys of the space of states. Thus, in the
observable thermodynamics only half of the states contribute, (these are the states which are on one
side from the barrier), and that is why in the observable thermodynamics the global magnetization of
the system appears to be non-zero.

In the terminology of the statistical mechanics this phenomenon is called the ergodicity breaking,
and it manifest itself as the spontaneous symmetry breaking: below Tc the observable thermodynamics
is getting non-symmetric with respect to the global change of signs of all the spins. As a consequence,
in the calculations of the partition function below Tc one has to take into account not all, but only one
half of all the microscopic states of the system (the states which belong to one valley).
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The above example of the ferromagnetic system is very simple because here one can easily guess
right away what kind of the symmetry could be broken at low temperatures. In spin glasses the
spontaneous symmetry breaking also takes place. However, unlike the ferromagnetic system, here it
is much more difficult to guess which one. The main problem is that the symmetry which might be
broken in a given sample can depend on the quenched disorder parameters involved. In this situation
the calculation of the observable free energy is getting extremely difficult problem because, unlike naive
plain summation over all the microscopic states, one must take into account only the states belonging
to one of the many valleys, while the structure of these valleys (which, in general, can appear to be
non-equivalent) depends on a concrete realization of the random disorder parameters.

2.3 Continuous sequence of the phase transitions

Of course, the existence of many local minima states in the frustrated spin system does not auto-
matically means that at low temperatures some of these states create their valleys separated by the
infinite barriers of the free energy. Due to thermal fluctuations (which are usually rather strong in
the low-dimensional systems) the energy barriers could effectively ”melt”, and in this case the only
ground state of the free energy could appear to be the one with the zero local spin magnetization.
Then there will be no spontaneous symmetry breaking, and at any finite temperature the system will
be in the ”symmetric” paramagnetic state. Of course, from the point of view of the anomalously slow
dynamic relaxation properties this state can be essentially different from the usual high-temperature
paramagnetic state, but this problem would lead us well beyond the scope of pure statistical mechanics.

It could also happen that due to some symmetry properties, thermal fluctuations etc., the global
minimum of the free energy of a given sample is achieved at low temperatures at some unique non-
trivial spin configuration (of course, in this case the ”counterpart” spin state which differ by the
global change of the signs of the spins must also be the ground state). It would mean that at low
enough temperatures (below certain phase transition temperature Tc) the system must ”freeze” in
this unique random spin state, which will be characterized by the non-zero values of the thermally
averaged local spin magnetizations at each site 〈σi〉. Since this ground state is random, the values of
the local magnetizations 〈σi〉 will fluctuate in their values and signs from site to site, so that the usual
ferromagnetic order parameter, which describes the global magnetization of the system: m = 1

N

∑
i〈σi〉

must be zero (in the infinite volume limit). However, this state can be characterized by the other order
parameter (usually called the Edwards-Anderson order parameter [5]):

q =
1
N

∑
i

〈σi〉2 6= 0 (2.2)

The properties of the systems of this type is studied in details in the papers by Fisher and Huse [6],
and we will not consider them here.

In the subsequent Chapters we will concentrate on a qualitatively different situation, which arises
when there exist macroscopically large number of spin states in which the system could get ”frozen”
at low temperatures. Moreover, unlike ”ordinary” statistical mechanical systems, according to the
mean-field theory of spin glasses the spontaneous symmetry breaking in the spin-glass state takes
place not just at certain Tc, but it occurs at any temperature below Tc. In other words, below Tc a
continuous sequence of the phase transitions takes place, and correspondingly the free energy appears
to be non-analytic at any temperature below Tc.

In general qualitative terms this phenomenon can be described as follows. Just below certain
critical temperature Tc the space of spin states is divided into many valleys (their number diverges
in the thermodynamic limit), separated by infinite barriers of the free energy. At the temperature
T = Tc−δT each valley is characterized by the non-zero values of the average local spin magnetizations
〈σi〉(α) (which, of course, fluctuate in a sign and magnitude from site to site). Here 〈...〉α denotes the
thermal average inside a particular valley number α. The order parameter, which would describe the
degree of freezing of the system inside the valleys could be defined as follows:

q(T ) =
1
N

∑
i

[〈σi〉(α)]2 (2.3)
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According to the mean-field theory of spin-glasses the value of q depends only on the temperature, and
it appears to be the same for all the valleys. At T → Tc, q(T )→ 0.

At further decrease of the temperature new phase transitions of ergodicity breaking takes place, so
that each valley is divided into many new smaller ones separated by infinite barriers of the free energy
(Fig.3). The state of the system in all new valleys can be again characterized by the order parameter
(2.3), and its value is growing while the temperature is decreasing.

As the temperature goes down to zero, this process of fragmentation of the space of states into
smaller and smaller valleys goes on continuously. In a sense, it means that at any temperature below
Tc the system is in the critical state.

To what extent this situation is realistic from the experimental point of view remains open, although
the series of recent experiments (which will be discussed in Chapter 9) gives strong indication in favour
of it. In any case, this new type of physics is very interesting in itself, and it is worthing to be studied.

2.4 Order parameter

It is clear that the order parameter (2.3) defined for one valley only, does not contain any information
about the other valleys, and it does not tell anything, about the structure of space the ground states
as a whole. Let us try to construct the other physical order parameter, which would describe this
structure as fully as possible.

Consider the following series of imaginary experiments. Let us take an arbitrary disordered spin
state, and then at a given temperature T below Tc let the system relax to the thermal equilibrium.
For each experiment a new starting random spin state should be taken. Then each experiment we will
be characterized by some equilibrium values of the average local spin magnetizations 〈σi〉(α), where α
denotes the number of the experiment. Since there exists macroscopically large number of valleys in
the phase space in which the system could get ”trapped” these site magnetizations, in general, could
be different for different experiments.

Let us assume that we have performed infinite number of such experiments. Then, we can introduce
the quantity, which would describe to what extent the states which have been obtained in different
experiments are close to each other:

qαβ =
1
N

N∑
i

〈σi〉(α)〈σi〉(β) (2.4)

It is clear that |qαβ | ≤ 1, and the maximum value of qαβ is achieved when the two states in the
experiments α and β coincide (in this case the overlap (2.4) coincides with that of (2.3), which has
been introduced for one valley only). It is also clear, that the less correlated the two different states
are, the smaller value of the overlap (2.4) they have. If the two states are not correlated at all, then
their overlap (in the thermodynamic limit) is equal to zero. In this sense the overlap qαβ defines a
kind of a metrics in the space of states (the quantity q−1

αβ could be conditionally called the ”distance”
in the space of states).

To describe the statistics of the overlaps in the space of these states one can introduce the following
probability distribution function:

P (q) =
∑
αβ

δ(qαβ − q) (2.5)

It appears that it is in terms of this distribution function P (q) the spin glass state looks essentially
different from any other ”ordinary” thermodynamic state.

Possible types of the functions P (q) is shown in Fig.4. The paramagnetic phase is characterized
by the only global minimum of the free energy, in which all the site magnetizations are equal to zero.
Therefore the distribution functions P (q) in this phase is the δ-function at q = 0 (Fig.4a). In the
ferromagnetic phase there are exist two minima of the free energy with the site magnetizations ±m.
Thus, the distribution function P (q) in this phase must contain two δ-peaks at q = ±m2 (Fig.4b). It
is clear that in the case of the ”fake” spin glass phase in which there exist only two global minima
disordered spin states (the states which differ by the global reversal of the local spin magnetizations)
the distribution function P (q) must look the same as in the ferromagnetic state.
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According to the mean-field theory of spin-glasses, which will be considered in the subsequent
Chapters, the distribution function P (q) in the ”true” spin glass phase looks essentially different
(Fig.4c). Here, between the two δ-peaks at q = ±qmax(T ) there is a continuous curve. The value of
qmax(T ) is equal to the maximum possible overlap of the two ground states which is the ”selfoverlap”
(2.3). Since the number of the valleys in the system is macroscopically large and their selfoverlaps are
all equal, the function P (q) has two δ-peaks at q = ±qmax(T ). The existence of the continuous curve
in the interval (0,±qmax(T )) is the direct consequence of the ”origin” of the spin states involved: since
they appear as the result of a continuous process of fragmentation of the valleys into the smaller and
smaller ones, the states which form such type of the hierarchy are getting necessary correlated.

Thus, it is the distribution function P (q) which can be considered as the proper physical order
parameter, adequately describing the peculiarities of the spin-glass phase. Although the procedure
of its definition described above looks somewhat artificial, later it will be shown that the distribution
function P (q) can be defined as the thermodynamical quantity, and moreover, in terms of the mean-field
theory of spin-glasses it can be calculated explicitly.

2.5 Ultrametricity

According to the qualitative picture described above, the spin-glass states are organized in a kind of a
hierarchical structure (Fig.3). It can be proved that this rather sophisticated space of states could be
described in terms of the well defined thermodynamical quantities.

In the previous Section we have introduced the distribution function P (q), which gives the proba-
bility to find two spin glass states having the overlap equal to q. Now let us introduce somewhat more
complicated distribution function P (q1, q2, q3) which gives the probability for arbitrary three spin glass
states to have their overlaps to be equal to q1, q2 and q3:

P (q1, q2, q3) =
∑
αβγ

δ(qαβ − q1)δ(qαγ − q2)δ(qβγ − q3) (2.6)

In terms of the mean-field theory for the model of the spin glasses with the long range interactions this
function can be calculated explicitly (Chapter 5). It can be shown that the function P (q1, q2, q3) is
not equal to zero only if at least two of its three overlaps are equal to each other and their value is not
larger than the third one. In other words, the function P (q1, q2, q3) is non-zero only in the following
three cases: q1 = q2 ≤ q3; q1 = q3 ≤ q2; q3 = q2 ≤ q1. In all other cases the function P (q1, q2, q3) is
identically equal to zero. It means that in the space of spin glass states there exist no triangles with all
three sides being different. The spaces having the above metric property are called ultrametric. The
ultrametricity from the point of view of physics (in mathematics the ultrametric structures was known
since the end of the last century) is described in details in the review [7].

The most simple illustration of the ultrametric structure can be made in terms of the hierarchical
tree (Fig.5). Here the space of the spin glass states is identified with the set of the endpoints of the
tree. The metric in this space is defined in such a way, that the overlap (the distance) between any
two states depends only on the number of generations to their closest ”ancestor” on the tree (as the
number of the generations increases, the value of the overlap decreases). One can easily check that the
space with such metrics is ultrametric.

It the mean-field theory of spin-glasses such illustrative tree of states actually describes the hierar-
chical fragmentation of the space of the spin-glass states into the valleys, as it has been described above
(Fig.3). If for the vertical axis in the Fig.5 we assign the (discrete) value of the paired overlaps q, then
the set of the spin glass states at any given temperature T < Tc can be obtained at the crossection of
the tree at the level q = qmax(T ). After decreasing the temperature to a new value T ′ < T , each of
the states at the level qmax(T ) gives birth to a numerous ”descendants”, which are the endpoints of
the tree at the new level qmax(T ′) > qmax(T ). Correspondingly, after increasing the temperature to a
higher value T ′′ > T , all the states having their common ancestors at the level qmax(T ′′) < qmax(T )
merge together into one state. As T → Tc, qmax(T ) → 0, which is the level of the (paramagnetic)
”grandancestor” of all the spin glass states.

Since the function qmax(T ) is determined by the temperature, it means that it is the temperature
which defined the level of the tree at which the ”horizontal” crossection should be made, and this,
in turn, reveal all the spin glass states at this temperature. All the states which are below this level
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are ”indistinguishable”, while all the states which are above this level form the ”evolution history”
of the spin glass states at a given temperature. In this sense the temperature defines the elementary
(”ultraviolet”) scale in the space of the spin glass states. This creates a kind of scaling in the spin glass
phase: by changing the temperature one just changes the scale in the space of the spin-glass states.

3 Mean Field Theory of Spin Glasses

3.1 Infinite range interaction model

The Sherrington and Kirkpatric (SK) model of spin glasses [8] is defined by the usual Ising spins
Hamiltonian:

H = −
N∑
i<j

Jijσiσj (3.1)

where the spin-spin interactions Jij are random quenched variables which are described by the sym-
metric Gaussian distribution independent for any pair of sites (i, j):

P [Jij ] =
∏
i<j

[

√
N

2π
exp{−N

2
J2
ij}] (3.2)

According to the above definition, each spin interacts with all the other spin of the system. For that
reason the space structure (dimensionality, type of the lattice, etc.) of this model is irrelevant for its
properties. The space here is just the set of N sites in which the Ising spins are placed, and all these
spins, in a sense, could be considered as the nearest neighbors. In the thermodynamic limit (N →∞)
such structure can be interpreted as the infinite dimensional lattice, and it is this property which makes
the mean-field approach to be exact.

According to the probability distribution (3.2) one gets:

Jij = 0 ; J2
ij =

1
N

(3.3)

where (...) denotes the averaging over random Jij ’s:

(...) ≡
∫
DJP [J](...) =

∏
i<j

[

√
N

2π

∫ +∞

−∞
dJij exp{−N

2
J2
ij}](...) (3.4)

One could easily check that due to the chosen normalization of the order of 1/N for the average square
values of the couplings Jij , the average energy of the system appears to of the order of N , as it should
be for an adequately defined physical system.

It is clear, of course, that microscopic structure of the model defined above is completely unphysical.
Nevertheless, this model has two big advantages: first, it is exactly solvable, and second, its solution
appears to be quite non-trivial. Moreover, on a qualitative level the physical interpretation of this
solution, hopefully, could be also generalized for ”normal” random physical systems. If it would be
discovered (e.g. in experiments) that real spin glasses demonstrate the physical properties predicted
due to the solution of the SK model, then, in a sense, it is not so important, what was the original
artificial system, which has initiated the true result.

3.2 Replica symmetric solution

To calculate the replica free energy Fn, eq.(1.33), according to the eqs. (1.32)-(1.34) one has to calculate
the annealed average of the n-th power of the partition function:

Zn =
∑
σa
i

∫
DJij exp{β

n∑
a=1

N∑
i<j

Jijσ
a
i σ

a
j −

N

2

∑
i<j

J2
ij} (3.5)
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(here and in what follows irrelevant pre-exponential factors are omitted). The integration over Jij ’s
gives:

Zn =
∑
σa
i

exp{ β
2

2N

N∑
i<j

(
n∑
a=1

σai σ
a
j )2} (3.6)

or:

Zn =
∑
σa
i

exp{1
4
β2Nn+

1
2
β2N

n∑
a<b

(
1
N

N∑
i

σai σ
b
i )

2} (3.7)

The summation over the sites in the above equation can be linearized by introducing the replica matrix
Qab:

Zn =
n∏
a<b

(
∫
dQab)

∑
σa
i

exp{1
4
β2Nn− 1

2
β2N

n∑
a<b

Q2
ab + β2

n∑
a<b

N∑
i

Qabσ
a
i σ

b
i } (3.8)

The replica variables Qab have clear physical interpretation. According to the above equation, the
equilibrium values of the matrix elements Qab are defined by the equations δZn/δQab = 0, which give:

Qab =
1
N

N∑
i

〈σai σbi 〉 (3.9)

Since the expression in the exponent of the eq.(3.8) is linear in the spatial summation, the total partition
function can be factorized into the independent site partition functions:

Zn =
n∏
a<b

(
∫
dQab) exp{1

4
β2Nn− 1

2
β2N

n∑
a<b

Q2
ab}

N∏
i

[
∑
σa
i

exp{β2
n∑
a<b

Qabσ
a
i σ

b
i }] (3.10)

or

Zn =
n∏
a<b

(
∫
dQab) exp{1

4
β2Nn− 1

2
β2N

n∑
a<b

Q2
ab +N log[

∑
σa

exp(β2
n∑
a<b

Qabσaσb)]} (3.11)

This equation can be represented as follows:

Zn =
∫
DQ̂ exp(−βnNfn[Q̂]) (3.12)

where

fn[Q̂] = −1
4
β +

1
2n
β

n∑
a<b

Q2
ab −

1
βn

log[
∑
σa

exp(β2
n∑
a<b

Qabσaσb)] (3.13)

In the thermodynamic limit the integral for the partition function (3.12) in the leading order in N is
given by the saddle point of the function f [Q̂]:

Zn ' [det
δ2f

δQ̂2
](−1/2) exp(−βnNf [Q̂∗]) (3.14)

Here Q̂∗ is the matrix corresponding to the minimum of the function f , and it is defined by the
saddle-point equation:

δf

δQab
= 0 (3.15)

According to a general scheme of the replica method, the quantity f [Q̂∗] in the limit n→ 0 gives the
density of the free energy of the system.
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Thus, further strategy should be in the following. First, for an arbitrary matrix Q̂ one has to
calculate an explicit expression for the replica free energy (3.13). Then one has to find the solution
Q̂∗ of the saddle-point equations (3.15) and the corresponding value for the replica free energy fn[Q̂∗].
Finally the limit limn→0 fn[Q̂∗] should be taken. Unfortunately, this systematic program can not be
fulfilled, because for an arbitrary matrix Q̂ the replica free energy (3.13) can not be calculated.

Therefore, the procedure of solving the problem is getting somewhat more intuitive. First, one has
to guess the correct structure of the solution Q̂∗, which would hopefully depend on the limited number
of parameters, and which would make possible to calculate the replica free energy (3.13). Then these
parameters should be obtained from the saddle-point equations (3.15), and finally the corresponding
value of the saddle-point free energy should be calculated. Of course, according to this scheme, one
would be able to find the extremum only inside some limited subspace of all matrices Q̂. However, if
it would be possible to prove that the corresponding Hessian δ2f/δQ̂2 at this extremum is positively
defined, then it would mean that the true extremum is found. (Of course, this scheme does not
guarantee that there exist no others saddle points.)

Since all the replicas in our system are equivalent, one could naively guess that the adequate form
of the matrix Q̂∗ is such that all its elements are equal:

Qab = q ; for all a 6= b (3.16)

This ansatz is called the replica symmetric (RS) approximation.
All the calculations in the RS approximation are very simple. For the replica free energy (3.13) one

gets:

f(q) = −1
4
β +

β

4n
n(n− 1)q2 − 1

βn
log[
∑
σa

exp{1
2
β2(

n∑
a

σa)2q − 1
2
β2nq}] (3.17)

In the standard way introducing the Gaussian integration one makes the quadratic term in the exponent
to be linear in σ’s:

f(q) = −1
4
β +

1
2
βq +

1
4

(n− 1)βq2 − 1
βn

log[
∫ +∞

−∞

dz√
2π

exp(−1
2
z2)

∑
σa=±1

exp{βz√q
n∑
a

σa}] (3.18)

Summing over σ’s one gets:

f(q) = −1
4
β +

1
2
βq +

1
4

(n− 1)βq2 − 1
βn

log
(∫ +∞

−∞

dz√
2π

exp(−1
2
z2)[2 cosh(βz

√
q)]n

)
(3.19)

Taking the limit n→ 0 one finally obtains:

f(q) = −1
4
β(1− q)2 − 1

β

∫ +∞

−∞

dz√
2π

exp(−1
2
z2)ln (2 cosh(βz

√
q)) (3.20)

Now one can easily derive the corresponding saddle-point equation for the parameter q:

q =
∫ +∞

−∞

dz√
2π

exp(−1
2
z2) tanh2(βz

√
q) (3.21)

One can easily check that at T ≥ Tc = 1 the only solution of this equation is q = 0. On the other
hand, at T < Tc there exists non-trivial solution q(T ) 6= 0. In the vicinity of the critical temperature,
at (1 − T ) ≡ τ << 1, this solution can be found explicitly: q(τ) ' τ . It is also easy to check that in
the low temperature limit T → 0, q(T )→ 1.

According to eqs.(3.16) and (3.9), the obtained solution for q(T ) gives us the physical order param-
eter:

q(T ) =
1
N

N∑
i

〈σi〉2 (3.22)
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Since q(T ) is not equal to zero in the low temperature region, T < Tc, the spins of the system must
be getting frozen in some random state. Besides, since there exists only one solution for q(T ), such a
disordered ground state must be unique.

After the result for the free energy is derived, one can easily perform further straightforward calcu-
lations to obtain the results for all the observable thermodynamical quantities, such as specific heat,
susceptibility, entropy etc. Thus, in terms of the considered replica symmetric ansatz a complete
solution of the problem can be easily obtained.

All that would be very nice, if it would be correct. Unfortunately, it is not. One of the simplest way
to see that there is something fundamentally wrong in the obtained solution is to calculate the entropy.
One can easily check that at sufficiently low temperatures the entropy is getting negative! (At T = 0
the entropy S = − 1

2π ' −0.17). Moreover, the calculations of the Hessian δ2f/δQ̂2 for the obtained
RS solution (see Appendix) demonstrate that this solution appears to be unstable (det(δ2f/δQ̂2) < 0)
in all the low temperature region T < Tc [10]. It means that the true solution must be somewhere
beyond the replica-symmetric subspace.

3.3 Replica symmetry breaking

Since the RS solution has appeared to be not satisfactory, we should try with some other structure for
the matrix Q̂ which would contain more parameters. Within this new subspace we have to calculate
the extremum of the replica free energy f [Q̂]. After that, to check the stability of the obtained solution
we have to calculate the corresponding Hessian δ2f/δQ̂2.

Actually, the situation appears to be much more sophisticated since (as we will see later) no ansatz
which contains finite number of parameters can provide a stable solution. Nevertheless, trying with
different structures of Q̂, and calculating the eigenvalues of the Hessian, one at least would be able to
judge which ansatz could be better (so to say, which is less unstable). Such a procedure could point
the correct ”direction” in the space of the matrices Q̂ towards the true solution.

The strategy of finding the true solution for the replica matrix Q̂ in the limit n → 0 is called the
Parisi replica symmetry breaking (RSB) scheme [1]. This is the infinite sequence of the ansatzs which
approximate the true solution better and better. Eventually, the true solution can be formulated in
terms of the continuous function, which is defined as the limit of the infinite sequence. Moreover, in
this limit one is able prove the stability of the obtained solution.

Consider now, step by step, which way the solution is approximated.

3.3.1 One-step RSB

At the first step, which is called the one-step RSB, it is ”natural” to divide n replicas into n/m groups
each containing m replicas (at this stage it is assumed that both m and n/m are integers). Then, the
trial matrix Q̂ is defined as follows: Qab = q1, if the replicas a and b belong to the same group, and
Qab = q0, if the replicas a and b belong to different groups (the diagonal elements are equal to zeros).
In the compact form such structure could be represented as follows:

Qab =
{
q1 if I( am ) = I( bm )
q0 if I( am ) 6= I( bm )

(3.23)

where I(x) is the integer valued function, which is equal to the smallest integer bigger or equal to x.
The qualitative structure of this matrix is shown in Fig.6.

In the framework of the one-step RSB we have three parameters: q1, q2 and m, and these parameters
has to be defined from the corresponding saddle-point equations. Using the explicit form of the matrix
Q̂ for the replica free energy (3.13) one gets:

f [Q̂] = −1
4
β +

1
2n
β

n∑
a<b

Q2
ab −

1
βn

logZ([Q̂]) (3.24)

where

Z([Q̂]) =
∑
σa

exp(β2
n∑
a<b

Qabσaσb) (3.25)
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Simple algebra yields:

n∑
a<b

Qabσaσb =
1
2

q0(
n∑
a=1

σa)2 + (q1 − q0)
n/m∑
k=1

(
m∑

ck=1

σck)2 − nq1

 (3.26)

Here k numbers the replica groups and ck numbers the replicas inside the groups. After the Gaussian
transformation in Z[Q̂] for each of the squares in the above equation, one gets:

Z[q1, q0,m] =
∫

dz√
2πq0

exp(− z2

2q0
)
∏n/m
k=0

[∫
dyk√

2π(q1−q0)
exp(− y2

k

2(q1−q0) )
]
×

×
∑
σa

exp
(
βz
∑n
a σa + β

∑n/m
k=0 yk(

∑m
ck=1 σck)− 1

2β
2nq1

) (3.27)

The summation over spins yields:

Z[q1, q0,m] =

exp(− 1
2β

2nq1)
∫

dz√
2πq0

exp(− z2

2q0
)
[∫

dy√
2π(q1−q0)

exp(− y2

2(q1−q0) ) (2 coshβ(z + y))m
]n/m (3.28)

For the second term in the eq.(3.24) one obtains:

β

2n

n∑
a<b

Q2
ab =

β

4n

[
q2
1m(m− 1)

n

m
+ q2

0(n2 −m2 n

m
)
]

=
1
4
β
[
q2
1(m− 1) + q2

0(n−m)
]

(3.29)

Now the limit n → 0 has to be taken. Originally the parameter m has been defined as an integer
in the interval 1 ≤ m ≤ n. The formal analytic continuation n→ 0 turns this interval into 0 ≤ m ≤ 1,
where m is getting to be a continuous parameter. Thus, taking the limit n → 0 in the eqs.(3.28) and
(3.29) for the free energy, eq.(3.24) one gets:

f(q1, q0,m) = − 1
4β
[
1 +mq2

0 + (1−m)q2
1 − 2q1

]
−

− 1
mβ

∫
dz√
2πq0

exp(− z2

2q0
)ln
[∫

dy√
2π(q1−q0)

exp(− y2

2(q1−q0) ) (coshβ(z + y))m
]
− ln2

(3.30)

One can easily check that in the extreme cases m = 0 and m = 1 the replica symmetric solution is
recovered with q = q0 and q = q1 correspondingly.

It should be noted that actually in the framework of the RSB formalism one has to look for the
maximum and not for the minimum of the free energy. The formal reason is that in the limit n → 0
the number of the components of the order parameter Q̂ is getting negative. For example, in the case
of the one-step RSB each line of the matrix Q̂ contains (m − 1) < 0 components which are equal to
q1, and (n −m) → −m < 0 components which are equal to q0. This phenomenon can also be easily
demonstrated for the case when the replica free energy (3.24) would contain only the trivial term
β
2n

∑
a<bQ

2
ab:

lim
n→0

[
1

2n
β
∑
a<b

Q2
ab

]
= −1

4
β
[
(1−m)q2

1 +mq2
0

]
(3.31)

Apparently, the ”correct extremum” of this free energy (in which the Hessian is positive) for 0 ≤ m ≤ 1
is the maximum and not the minimum with respect to q0 and q1.

To derive the saddle-point equations for the parameters q0, q1 and m one just has to take the
corresponding derivatives of the free energy (3.30). The calculations are straightforward, but since the
resulting equations are rather cumbersome, we omit this simple exercise. The results of the numerical
solution of these saddle-point equations are in the following:
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1) At T < Tc = 1 the function f [q1, q0,m] indeed has the maximum at the non-trivial point:
0 < m(T ) < 1; 0 < q0(T ) < 1; 0 < q1(T ) < 1 (both for T → 1 and T → 0 one gets m(T )→ 0 ).

2) Although at low temperatures the entropy of this solution is getting negative again, its absolute
value appears to be much smaller than that of the RS solution: S(T = 0) ' −0.01 (while for the RS
solution S(T = 0) ' −0.17)

3) The most negative eigenvalue of the Hessian near Tc is equal to −c(T −Tc)2/9 (c is some positive
number), while for the RS solution it is equal to −c(T − Tc)2. This could be interpreted, as the
instability of the solution being reduced by the factor 9.

Thus, although the considered one-step RSB solution turned out to be not satisfactory too, it has
appeared to be much better approximation than the RS one. Therefore one could try to move further
in the chosen ”direction” in the replica space.

3.3.2 Full-scale RSB

Let us try to generalize the structure of the matrix Q̂ for more steps of the replica symmetry breaking.
Let us introduce a series of integers: {mi} (i = 1, 2, ..., k + 1) such that m0 = n,mk+1 = 1 and all
mi/mi+1 at this stage are integers. Next, let us divide n replicas into n/m1 groups such that each
group would consist of m1 replicas; each group of m1 replicas divide into m1/m2 subgroups so that
each subgroup would consist of m2 replicas; and so on (Fig.7). Finally, the off-diagonal elements of
the matrix Q̂ let us define as follows:

Qab = qi, if I( a
mi

) 6= I( b
mi

) and I( a
mi+1

) = I( b
mi+1

); (i = 1, 2, ..., k + 1) (3.32)

where {qi} are a set of (k + 1) parameters (k = 1 corresponds to the case of the one-step RSB).
The above definition of the matrix elements can also be represented in terms of the hierarchical

tree shown in Fig.8: a particular matrix element Qab is equal to qi corresponding to the level i of the
tree, at which the lines outgoing from the points a and b meet. The structure of the matrix Q̂ for the
case k = 2 is shown in Fig.9.

Now we have to calculate the free energy, eqs.(3.24)-(3.25), which depends on (k + 1) parameters
qi and k parameters mi. After that, the limit n → 0 has to be taken. Until the parameter n is
integer, according to the above definition of the n× n matrix Q̂ the parameters {mi} must satisfy the
inequalities 1 ≤ mi+1 ≤ mi ≤ n. After the analytic continuation to the limit n→ 0 these inequalities
turn into 0 ≤ mi ≤ mi+1 ≤ 1.

The calculation of the free energy is similar to that of the one-step RSB case. After somewhat
painful algebra the result obtained for the limit n→ 0 is in the following:

f [q0, q1, ..., qk;m1,m2, ...,mk] = − 1
4β
[
1 +

∑k
i=1(mi+1 −mi)q2

i − 2qk
]
−− 1

m1

∫
dz0√
2πq0

exp(− z2
0

2q0
)×

×ln{
∫
dz1

exp(−
z21

2(q1−q0) )√
2π(q1−q0)

[
∫
dz2

exp(−
z22

2(q2−q1) )√
2π(q2−q1)

[...[
∫
dzk

exp(−
z2
k

2(qk−qk−1) )
√

2π(qk−qk−1)
×

×
(

2 coshβ(
∑k
i=0 zk)

)mk
]mk−1/mk ...]m2/m3 ]m1/m2}

(3.33)
Finally, the parameters qi and mi have to be obtained from the saddle-point equations:

∂f

∂qi
= 0 ;

∂f

∂mi
= 0 (3.34)

Unfortunately, it is hardly possible to obtain the explicit analytic solutions of these equations for
an arbitrary k. Nevertheless, for a given (not very large) value of k these equations can be solved
numerically, and in particular, for k = 3 the numerical solution for the zero temperature entropy give
the result S(T = 0) ' −0.003. In general, one finds that the more steps of the RSB is taken the less
unstable the corresponding solution is. It indicates that presumably the true stable solution could be
found in the limit k →∞. In this limit the infinite set of the parameters qi can be described in terms
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of the order parameter function q(x) defined in the interval (0 ≤ x ≤ 1). This function is obtained
from the discrete step-like function:

q(x) = qi, for 0 ≤ mi < x < mi+1 ≤ 1; (i = 0, 1, ..., k) (3.35)

in the limit of infinite number of steps, k → ∞. In these terms the free energy is getting to be
the functional of the function q(x), and then the problem can be formulated as the searching for the
maximum of this functional with respect to all (physically sensible) functions q(x):

δf

δq(x)
= 0 (3.36)

For an arbitrary temperature T < Tc the solution of this equation can be found only numerically.
Nevertheless, near Tc all the calculations could be performed analytically, and the order parameter
function q(x) can be found explicitly (see Section 3.5 below). This solution appears to be quite helpful
for attaining qualitative physical understanding of what is going on in the low-temperature spin-glass
phase (see Chapter 4). However, before proceeding with these calculations it is necessarily to stop for
a brief review of the formal general properties of the Parisi RSB matrices which will be widely used in
the further considerations.

3.4 Parisi RSB algebra

Using the definitions of the previous Section one can easily prove that the linear space of the Parisi
matrices, when completed with the identity Iab = δab, is closed with respect to the matrix product
(QP )ab =

∑
cQacPcb and the Hadamard product (Q · P )ab = QabPab, operation by means of which it

is possible to build polynomials which are invariant by permutations of replica indices.
Consider a generic Parisi matrix Q̂, which in the continuum limit k →∞ for an arbitrary value of

the parameter n < 1 is parametrized by its diagonal element q̃ and the off-diagonal function q(x) (n ≤
x ≤ 1): Q̂→ (q̃, q(x)). Then for the linear invariants TrQ̂ and

∑
abQab one can easily prove:

TrQ̂ = nq̃ (3.37)

and

lim
k→∞

n∑
a,b

Qab = nq̃ + lim
k→∞

n
k∑
i=0

(mi −mi+1)qi = nq̃ − n
∫ 1

n

dxq(x) (3.38)

Similarly to the above equation one gets:

lim
k→∞

n∑
a,b

Qlab = nq̃l − n
∫ 1

n

dxql(x) (3.39)

where the power l can be arbitrary.
Now let A and B be two Parisi matrices parametrized respectively by (ã, a(x)) and (b̃, b(x)). Then

for an arbitrary finite n for the Hadamard product (Q · P )ab = QabPab one easily proves:

A ·B → (ãb̃, a(x)b(x)) (3.40)

Let us denote the parametrization of the matrix product of the two matrices as follows: AB → (c̃, c(x)).
Then after somewhat painful algebra one can prove that

c̃ = ãb̃− 〈ab〉

c(x) = −na(x)b(x) + (ã− 〈a〉)b(x) + (b̃− 〈b〉)a(x)−

−
∫ x
n
δy(a(x)− a(y))(b(x)− b(y))

(3.41)

where we have introduced the notation:
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〈a〉 ≡
∫ 1

n

dxa(x) (3.42)

For the eigenvalues of a Parisi matrix Q and their multiplicities one finds:

λ0 = ã− 〈a〉 with multiplicity 1

λ(x) = ã− xa(x)−
∫ 1

x
dyq(y) with multiplicity − ndx

x2

(3.43)

where x ∈ [n, 1].
The above algorithms are sufficient to operate quite easily with the Parisi matrices in the continuum

RSB representation.

3.5 RSB solution near Tc

Near the critical temperature Tc = 1 the solution for the saddle-point function q(x) can be obtained
analytically. In the vicinity of the phase transition point the order parameter q(x) should be expected
to be small in τ = (Tc − T )/Tc � 1, and consequently one can expand the replica free energy (3.24)-
(3.25) in powers of the matrix Qab. This calculation is straightforward, and the result of the expansion
up to the fourth order is in the following:

f [Q̂] = limn→0
1
n [− 1

2τTr(Q̂)2 − 1
6Tr(Q̂)3 − 1

12

∑
a,bQ

4
ab+

+ 1
4

∑
a,b,cQ

2
abQ

2
ac − 1

8Tr(Q̂)4]
(3.44)

Here in all the terms but the first one we have substituted T = 1.
Detailed study of the stability of the replica symmetric solution shows that it is the term

∑
a,bQ

4
ab

which makes the RS solution to be unstable below Tc, and it is this term which is responsible for the
replica symmetry breaking [9]. This indicates that for the RSB solution near Tc, the last two terms
of the fourth order in (3.44) should be expected to be of higher orders in τ than all the other terms.
Thus, to obtain the solution in the most easy way one can first neglect these last two terms, and then
using the explicit form of the obtained solution for q(x) one can easily prove aposteriori that these
neglected terms are indeed of higher orders in τ .

Using the rules for the Parisi matrices in the continuum RSB representation described in the
previous Section one can easily get the explicit expression for the free energy as the functional of q(x).
In particular, using eq.(3.41) for the second term in eq.(3.44) after simple algebra in the limit n → 0
one gets:

lim
n→0

1
n
Tr(Q̂)3 =

∫ 1

0

dx

[
xq3(x) + 3q(x)

∫ x

0

dyq2(y)
]

(3.45)

The first and the third terms in eq.(3.44) can be expressed using eq.(3.39) (in our case q̃ ≡ 0). For the
free energy one finally obtains:

f [q(x)] =
1
2

∫ 1

0

dx

[
τq2(x)− 1

3
xq3(x)− q(x)

∫ x

0

dyq2(y) +
1
6
q4(x)

]
(3.46)

Variation of this expression with respect to the function q(x) yields the following saddle-point equation:

2τq(x)− xq2(x)− 2q(x)
∫ 1

x

dyq(y)−
∫ x

0

dyq2(y) +
2
3
q3(x) = 0 (3.47)

The solution of this equation is simple. Taking the derivative of eq.(3.47) over x one gets:

q′(x)
[
2τ − 2xq(x)− 2

∫ 1

x

dyq(y) + 2q2(x)
]

= 0 (3.48)

This equation results in the following:
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2τ − 2xq(x)− 2
∫ 1

x

dyq(y) + 2q2(x) = 0 (3.49)

or

q′(x) = 0 (3.50)

The last equation means that q(x) = const, and it corresponds to the replica symmetric solution which
has been already studied. Consider the eq.(3.49). Taking the derivative over x again, one gets:

q(x) =
1
2
x (3.51)

The above simple analysis allows us to build an anzats for a general form of the solution of the
original saddle-point equation (3.47):

q(x) =

 q0, 0 ≤ x ≤ x0
1
2x, x0 ≤ x ≤ x1

q1, x1 ≤ x ≤ 1
(3.52)

where

x1 = 2q1 ; x0 = 2q0 (3.53)

Substituting eq.(3.52) into the original saddle-point equation (3.47) one obtains two equations for two
unknown parameters q0 and q1:

q0

[
2τ − 2q1 + 2q2

1

]
− 4

3q
3
0 = 0

q1

[
2τ − 2q1 + 2q2

1

]
− 4

3q
3
0 = 0

(3.54)

The solution of these equations is:

q0 = 0

q1 = τ +O(τ2)
(3.55)

Now one can easily check that the last two terms of the fourth order in eq.(3.44) are of the higher
order in τ compared to the other terms. It appears that since they contain additional summations over
replicas, in the continuum limit representation this results in the additional integrations over x which
eventually provides additional powers of τ .

Note that the obtained RSB solution could be easily generalized for the case of non-zero external
magnetic field represented in the original Ising spin Hamiltonian (3.1) by the term h

∑
i σi. As a matter

of a simple exercise one can easily derive that if the value of the field h is small in the corresponding
expression for the functional RSB free energy (near Tc), eq.(3.46), the magnetic field is represented by
the additional term h2q(x). This does not change the structure of the saddle-point solution (3.52), but
in the r.h.s. of the eqs.(3.54) for the parameters q0 and q1 one gets h2 instead of zero. Then, in the
leading order in τ and h the value of q1 does not change, while the parameter q0 (and x0) is getting to
be non-zero:

q0 ∼ h2/3 (3.56)

Thus, at the critical value of the field

hc(τ) ' τ3/2 (3.57)

(when x0 = x1 and q0 = q1) the solution for q(x) is getting to be replica symmetric. Actually, the
equation for the critical line hc(T ) (which is usually called the de Almeida-Thouless (AT) line) could
be obtained for the whole range of temperatures and the magnetic fields [10]. Moreover, it can be
shown that for h > hc(T ) the replica symmetric solution getting stable.
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4 Physics of the Replica Symmetry Breaking

In this Chapter the physical interpretation of the formal RSB solution will be proposed, and some new
concepts and quantities will be introduced. The crucial concept which is needed to understand physics
behind the RSB structures is that of the pure states.

4.1 The pure states

Consider again a simple example of the ferromagnetic system. Here below the critical temperature
Tc the spontaneous symmetry breaking takes place, and at each site the non-zero spin magnetizations
〈σi〉 = ±m appear. As we have already discussed in Section 2.2, in the thermodynamic limit the two
ground states with the global magnetizations 〈σi〉 = +m and 〈σi〉 = −m are getting to be separated
by an infinite energy barrier. Therefore, once the system has happened to be in one of these states,
it will never be able (during any finite time) to jump into the other one. In this sense, the observable
state is not the Gibbs one (which is obtained by summing over all the states), but one of these two
states with non-zero global magnetizations. To distinguish them from the Gibbs state they could be
called the ”pure states”. More formally the pure states could also be defined by the property that all
the connected correlation functions in these states, such as 〈σiσj〉c ≡ 〈σiσj〉 − 〈σi〉〈σj〉, are getting to
be zero at large distances.

In the previous Chapter we have obtained a special type of the spin-glass ground state solution.
Formally this solution is characterized by the RSB in the corresponding order parameter matrix Qab.
It means that actually there exist many other solutions of this type in the spin-glass phase. This
fact is a direct consequence of the symmetry of the replica free energy (3.24)-(3.25) with respect to
permutations of replicas: if there exists a particular solution for the matrix Q̂∗ with the RSB, then any
other matrix obtained via permutations of the replica indices in Q̂∗ will also be a solution. On the other
hand, since the total mean-field free energy (which is the function of Q̂) is proportional to the volume
of the system the energy barriers separating the corresponding ground states must be getting infinite in
the thermodynamic limit. Consequently, just like in the example of the ferromagnetic system, all these
RSB states could called the pure states of the low-temperature spin-glass phase. Correspondingly, the
Gibbs state of the spin glass (which is formally obtained by summing over all the states of the system)
could be considered as being given by the summation over all the pure states with the corresponding
thermodynamic weight defined by values of their free energies.

For instance, the thermodynamic (Gibbs) average of the site magnetizations could be represented
as follows:

〈σi〉 ≡ mi =
∑
α

wαm
α
i (4.1)

Here mα
i are the site magnetizations in the pure state number α, and wα denotes its statistical weight

which formally could be represented as follows:

wα = exp(−Fα) (4.2)

where Fα is the free energy corresponding to this pure state. In the same way the two-point correlation
function can be represented as the linear combination

〈σ1σ2〉 =
∑
α

wα〈σ1σ2〉α (4.3)

where 〈σ1σ2〉α is the two-point correlation function in the pure state number α. According to the
definition of the pure state

〈σ1σ2〉α = 〈σ1〉α〈σ2〉α (4.4)

Similar expressions could be written for any many-point correlation functions.
The representation of the thermodynamic Gibbs state as a linear combination of the pure states in

which all extensive quantities have vanishing long-distance fluctuations, is actually, a central point in
the exact definition of the concept of the spontaneous symmetry breaking in statistical mechanics.
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4.2 Physical order parameter P (q) and the replica solution

To investigate the statistical properties of the spin-glass pure states let us define the overlaps {qαβ}
among them as follows:

qαβ ≡
1
N

N∑
i

mα
i m

β
i (4.5)

where mα
i = 〈σi〉α and mβ

i = 〈σi〉β are the site magnetizations in the pure states α and β. Apparently,
0 ≤| qαβ |≤ 1.

To describe the statistics of these overlaps it is natural to introduce the following the probability
distribution function:

PJ(q) =
∑
αβ

wαwβδ(qαβ − q) (4.6)

Note, that this distribution function is defined for a given sample, and it can depend on a concrete
realization of the quenched interactions Jij . The ”observable” distribution function should, of course,
be averaged over the disorder parameters:

P (q) = PJ(q) (4.7)

The distribution function P (q) gives the probability to find two pure states having the overlap equal
to q, conditioned that these states are taken with their statistical thermodynamic weights {wα}.

It is the distribution function P (q) which can be considered as the physical order parameter. It
should be stressed that P (q) is much more general concept than ordinary order parameters which
usually describe the phase transitions in ordinary statistical systems. The fact that it is a function
is actually a manifestation of the crucial phenomenon that for the description of the spin glass phase
one needs an infinite number of the order parameters. The non-trivial structure of this distribution
function (it will be calculated explicitly below) demonstrates that the properties of the spin glass state
are essentially different from those of the traditional magnets.

Consider now which way the order parameter function P (q) could be calculated in terms of the
replica method. Let us introduce the following set of the correlation functions:

q
(1)
J = 1

N

∑
i〈σi〉2

q
(2)
J = 1

N2

∑
i1i2
〈σi1σi2〉2

...................

q
(k)
J = 1

Nk

∑
i1...ik

〈σi1 ...σik〉2

(4.8)

Using the representation of the Gibbs averages in terms of the pure states (4.3)-(4.4) for the correlation
functions (4.8) one gets:
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q
(1)
J = 1

N

∑
i(
∑
α wα〈σi〉α)(

∑
β wβ〈σi〉β) =

=
∑
αβ wαwβqαβ =

∫
dqPJ(q)q ;

q
(2)
J = 1

N2

∑
i1i2

(
∑
α wα〈σi1σi2〉α)(

∑
β wβ〈σi1σi2〉β) =

=
∑
αβ wαwβ( 1

N

∑
i1
〈σi1〉α〈σi1〉β)( 1

N

∑
i2
〈σi2〉α〈σi2〉β) =

=
∑
αβ wαwβ(qαβ)2 =

∫
dqPJ(q)q2 ;

...................

q
(k)
J =

∫
dqPJ(q)qk

(4.9)

For the corresponding correlation functions averaged over the disorder from eqs.(4.8)-(4.9) one gets:

q(1) ≡ q(1)
J = 〈σi〉2 =

∫
dqP (q)q

...........

q(k) ≡ q
(k)
J = 〈σi1 ...σik〉2 =

∫
dqP (q)qk

(4.10)

where i1 6= i2 6= ... 6= ik.
The crucial point in the above consideration is that the function P (q) originally defined to describe

the statistics of (somewhat abstract) pure states, can be calculated (at least theoretically) from the
multipoint correlation functions in the Gibbs states. Therefore, if we could be able to calculate the
above multipoint correlation functions in terms of the replica approach, the connection of the formal
RSB scheme with the physical order parameter would be established.

In terms of the replica approach the correlator q(1) = 〈σi〉2 can be represented as follows:

q(1) =

1
Z2

∑
σ

∑
s(σisi) exp(−βH[σ]− βH[s]) =

= limn→0(
∏n
a=1

∑
σa)(σbiσ

c
i ) exp(−β

∑n
a=1H[σa])

≡ limn→0 〈σbiσci 〉 (b 6= c)

(4.11)

where a and b are two different replicas (the summation over the rest (n− 2) replicas in eq.(4.11) gives
the factor Zn−2 which turns into Z−2 in the limit n→ 0). In a similar way one gets:

q(2) = limn→0 〈σai1σ
a
i2
σbi1σ

b
i2
〉 ; (i1 6= i2; a 6= b)

.........

q(k) = limn→0 〈σai1 ...σ
a
ik
σbi1 ...σ

b
ik
〉 ; (i1 6= i2 6= ... 6= ik; a 6= b)

(4.12)

In the calculations of the previous Chapter it has been demonstrated that the free energy of the
model under consideration is factorizing into the independent site replica free energies. Therefore, the
result (4.12) for q(k) can be represented as follows:

q(k) = lim
n→0

[〈σai σbi 〉]
k = lim

n→0
[Qab]k (4.13)

where (see eq.(3.9))
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Qab = 〈σai σbi 〉 (4.14)

is the replica order parameter matrix introduced in the Chapter 3, which is obtained from the saddle
point equation for the replica free energy. Since in the RSB solution the matrix elements of Qab are
not equivalent, for performing the Gibbs average one has to sum over all the saddle point solutions for
the matrix Qab. Such solutions can be obtained from one of the RSB solutions by doing all possible
permutations of rows and columns in Qab. The summation over all these permutations corresponds
to the summation over the replica subscripts a and b of the matrix Qab. Thus, the final result for the
correlator q(k) should be represented as follows:

q(k) = lim
n→0

1
n(n− 1)

∑
a6=b

[Qab]k (4.15)

where n(n−1) is the normalization factor which is equal to the number of different replica permutations.
The results (4.15) and (4.10) demonstrate that using the formal RSB solution for the matrix Qab

considered in the previous Chapter one can calculate the order parameter distribution function P (q)
which has been originally introduced on the basis of purely qualitative physical arguments. From these
two equations one gets the following explicit expression for the distribution function P (q):

P (q) = lim
n→0

1
n(n− 1)

∑
a6=b

δ(Qab − q) (4.16)

Using the algorithms of the Parisi algebra, Section 3.4, in the continuous RSB representation this result
can be rewritten as follows:

P (q) =
∫ 1

0

dxδ(q(x)− q) (4.17)

Assuming that the function q(x) is monotonous (which is the case for the saddle-point solution obtained
in Chapter 3), one can introduce the inverse function x(q), and then from eq.(4.17) one finally obtains:

P (q) =
dx(q)
dq

(4.18)

(Note that the same result can be obtained by comparing the eqs.(4.15) and (4.10).) This is key
result, which defines the physical order parameter distribution function P (q) in terms of the formal
saddle-point Parisi function q(x).

The above result can also be represented in the integral form:

x(q) =
∫ q

0

dq′P (q′) (4.19)

which gives the answer to the question, what is the physical meaning of the Parisi function q(x).
According to eq.(4.19) the answer is in the following: the function x(q) inverse to q(x) gives the
probability to find a pair of the pure states which would have the overlap not bigger than q

Using the explicit solution for the Parisi function q(x) in the vicinity of the critical point, eqs.(3.52)-
(3.56), according to eq.(4.18) for the distribution function P (q), one gets:

P (q) = x0δ(q − q0) + (1− x1)δ(q − q1) + p(q) (4.20)

where p(q) is the smooth function defined in the interval q0 ≤ q ≤ q1. In the close vicinity of the
critical point, τ � 1, where the solution (3.52) is valid, this function is just constant: p(q) = 2.

The result (4.20) shows that the statistics of the overlaps of the pure states demonstrates the
following properties:

1) There is a finite probability (1 − x1) ' (1 − 2τ) that taken at random two pure states would
appear to be the same state. The ”selfoverlaps”, eq.(2.3), of these states is equal to q1 ' τ .

2) In the presence of non-zero external magnetic field h there is a finite probability x0 ∼ h2/3 that
taken at random two pure states would appear to be the most ”distant” having the minimum possible
overlap q0 ∼ h2/3.
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3) there is a finite probability (x1 − x0) that taken at random two pure states would have the
overlap q in the interval q0 ≤ q ≤ q1. For a given small interval δq there is a finite probability p(q)δq
to find two pure states with the overlap in the interval (q, q + δq), where q0 ≤ q ≤ q1.

Although for arbitrary values of the temperature and the magnetic field it is hardly possible to
calculate the functions q(x) and P (q) analytically, their qualitative behavior remains similar to the
case considered above. The only difference is that the concrete shape of the function P (q) in the
interval q0 ≤ q ≤ q1 (as well as the function q(x) at the interval x0 ≤ x ≤ x1) is getting less trivial.
Besides the dependencies of x0, x1, q0 and q1 from the temperature and the magnetic field are getting
more complicated.

The qualitative behavior of the functions q(x) and P (q) for different values of the temperature and
the magnetic field are shown in Fig.10.

5 Ultrametricity

5.1 Ultrametric structure of pure states

The solutions for the functions q(x) and P (q), obtained in the previous Chapters, indicate that the
structure of the space of the spin-glass pure states must be highly non-trivial. However, the distribution
function P (q) of the pure states overlaps does not give enough information about this structure. To
get insight into the topology of the space of the pure states one needs to know the properties of the
higher order correlations of the overlaps.

Let us consider the distribution function P (q1, q2, q3) which describes the joint statistics of the
overlaps of arbitrary three pure states. By definition, for arbitrary three pure states α, β and γ this
function gives the probability that their mutual overlaps qαβ , qαγ and qβγ are equal correspondingly to
q1, q2 and q3:

P (q1, q2, q3) =
∑
αβγ

wαwβwγδ(q1 − qαβ)δ(q2 − qαγ)δ(q3 − qβγ) (5.1)

In terms of the RSB scheme the calculation of this function is quite similar to that for the function
P (q). In particular, in terms of the replica matrix Qab instead of the eq.(4.16), in the present case one
can easily prove that

P (q1, q2, q3) =

limn→0
1

n(n−1)(n−2)

∑
a6=b 6=c δ(Qab − q1)δ(Qac − q2)δ(Qbc − q3)

(5.2)

In terms of the Fourier transform of the function P (q1, q2, q3):

g(y1, y2, y3) =
∫
dq1dq2dq3P (q1, q2, q3) exp(iq1y1 + iq2y2 + iq3y3) (5.3)

instead of eq.(5.2) one gets:

g(y1, y2, y3) =

limn→0
1

n(n−1)(n−2)

∑
a6=b 6=c exp(iQaby1 + iQacy2 + iQbcy3) =

limn→0
1

n(n−1)(n−2)Tr[Â(y1)Â(y2)Â(y3)]

(5.4)

where

Aab(y) =
{

exp(iQaby) ; a 6= b
0 ; a = b

(5.5)

Let us substitute the RSB solution for the matrix Qab into the eq.(5.4). In the continuum RSB limit
the matrix Qab turns into the function q(x), and according to the Parisi algebra (Section 3.4) the
replica matrix Aab(y) turns into the corresponding function A(x; y):
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A(x; y) = exp(iq(x)y) (5.6)

Using the algorithms of the Parisi algebra, eqs.(3.39)-(3.43) after simple calculations one obtains:

limn→0
1

n(n−1)(n−2)Tr[Â(y1)Â(y2)Â(y3)] =

= 1
2

∫ 1

0
dx[xA(x; y1)A(x; y2)A(x; y3) +A(x; y1)

∫ x
0
dzA(z; y2)A(z; y3)+

A(x; y2)
∫ x

0
dzA(z; y1)A(z; y3) +A(x; y3)

∫ x
0
dzA(z; y1)A(z; y2)]

(5.7)

Accordingly, for the function P (q1, q2, q3):

P (q1, q2, q3) =
∫
dy1dy2dy3g(y1, y2, y3) exp(−iq1y1 − iq2y2 − iq3y3) (5.8)

one gets:

P (q1, q2, q3) =

= 1
2

∫ 1

0
dx[xδ(q(x)− q1)δ(q(x)− q2)δ(q(x)− q3) +

δ(q(x)− q1)
∫ x

0
dzδ(q(z)− q2)δ(q(z)− q3) +

δ(q(x)− q2)
∫ x

0
dzδ(q(z)− q1)δ(q(z)− q3) +

δ(q(x)− q3)
∫ x

0
dzδ(q(z)− q1)δ(q(z)− q2)

(5.9)

Introducing the integration over q instead of that over x and taking into account that dx(q)/dq = P (q)
one finally obtains the following result:

P (q1, q2, q3) = 1
2P (q1)x(q1)δ(q1 − q2)δ(q1 − q3)+

1
2P (q1)P (q2)θ(q1 − q2)δ(q2 − q3)+

1
2P (q2)P (q3)θ(q2 − q3)δ(q3 − q1)+

1
2P (q3)P (q1)θ(q3 − q1)δ(q1 − q2)

(5.10)

From this equation one can easily see the following crucial property of the function P (q1, q2, q3). It is
non-zero only in the following three cases: q1 = q2 ≤ q3; q1 = q3 ≤ q2; q3 = q2 ≤ q1. In all other
cases the function P (q1, q2, q3) is identically equal to zero. In other words, this function is not equal
to zero only if at least two of the three overlaps are equal, and their value is not bigger than the third
one. It means that in the space of spin glass states there exist no triangles with all three sides being
different. The spaces having the above metric property are called ultrametric.

A simple illustration the ultrametric space can be given in terms of the hierarchical tree (Fig.11).
The ultrametric space here is associated with the set of the endpoints of the tree. By definition, the
overlaps between any two points of this space depends only on the number of ”generations” (in the
”vertical” direction) to the level of the tree where these two points have a common ancestor. One
can easily check that paired overlaps among arbitrary three points of this set do satisfy the above
ultrametric property.

A detailed description of the ultrametric spaces the reader can find in the review [7]. Here we are
going to concentrate only on a general qualitative properties of the ultrametricity which are crucial for
the physics of the spin glass state.

5.2 The tree of states

Let us consider how the spin-glass ultrametric structures can be defined in more general terms.
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Consider the following discrete stochastic process which is assumed to take place independently at
each site i of the lattice.

1. At the first step, with the probability P0(y) one generates n1 random numbers yα1 (α1 =
1, 2, ..., n1), which belong to the interval [−1,+1].

2. At the second step, for each yα1 with the conditional probability P1(yα1 |y) one generates n2

random numbers yα1α2 (α2 = 1, 2, ..., n2), belonging to the same interval [−1,+1].
3. At the third step, for each yα1α2 with the conditional probability P2(yα1α2 |y) one generates n3

random numbers yα1α2α3 (α3 = 1, 2, ..., n3), belonging to the same interval [−1,+1].
.....
This process is continued up to the L-th step. Finally, in the interval [−1,+1] one gets n1n2...nL

random numbers, which are described by the following set of the probability functions

Pl−1(yα1...αl−1 |yα1...αl) (l = 1, 2, ..., L) (5.11)

This stochastic (Markov) process takes place independently at each site of the lattice. Then, for
each set of the obtained random numbers let us define the corresponding site spin states as follows:

σα1...αL
i = sign(yα1...αL

i ) (5.12)

This way one obtains the set of n1n2...nL spin states which are labeled by the hierarchical ”address”
α1...αL. The ”address” of a concrete state describes its genealogical ”history”.

Simple probabilistic arguments show that the overlap between any two spin states depends only on
the degree of their ”relativeness”, i.e. it is defined only by the number of generations which separates
them from the closest common ancestor. Consider two spin states which have the following ”addresses”:

α1α2...αlαl+1αl+2...αL

and

α1α2...αlβl+1βl+2...βL

These two ”addresses” are getting different starting from the generation number l. Since the stochastic
processes generating the states is independent at each site, for the overlap between these two states

q
α1...αlαl+1...αL
α1...αlβl+1...βL

=
1
N

N∑
i

σ
α1...αlαl+1...αL
i σ

α1...αlβl+1...βL
i (5.13)

in the thermodynamic limit N →∞ one gets:

q
α1...αlαl+1...αL
α1...αlβl+1...βL

=

∫ +1

−1
dy1...dylP0(y1)P1(y1|y2)...Pl−1(yl−1|yl)×

×[
∫ +1

−1
dyl+1...dyLPl(yl|yl+1)Pl+1(yl+1|yl+2)...PL−1(yL−1|yL)sign(yL)]2 ≡ ql

(5.14)

Therefore, the overlap depends only on the number l of the level of the tree at which the two states were
separated in their genealogical history, and does not depend on the concrete ”addresses” of these states.
One can easily see that it automatically means that the considered set of the states is ultrametric.

Note, that this is a general property of the considered stochastic evolution process, and it remains
to be true for any choice of the probability distribution functions (5.11) which describe the concrete
tree of states. A general reason for that is very simple. The above stochastic procedure has been
defined as the random branching process which takes place in the infinite dimensional space (in the
limit N →∞), and it is clear that here the branches once separated never comes close again. Therefore,
it is of no surprise that the ultrametricity is observed in Nature very often. The examples are the space
of biological species, the hierarchical state structures of disordered human societies, etc.

Let us consider the above hierarchical tree of states in some more details. The equations for the
overlaps between two spin states (5.13) and (5.14) can also be represented in terms of the so-called
ancestor states mα1...αl :
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ql =
1
N

N∑
i

(mα1...αl
i )2 (5.15)

where the site magnetizations in the ancestor state mα1...αl at the level l are defined as follows:

mα1...αl
i = 〈σα1...αlαl+1...αL

i 〉(αl+1...αL) ≡ ml(yα1...αl
i ) (5.16)

Here 〈...〉(αl+1...αL) denotes the averaging over all the descendant states (branches) of the tree outgoing
from the branch α1...αl at the level number l. By definition:

ml(yα1...αl
i ) =

=
∫ +1

−1
dyl+1...dyLPl(yα1...αl

i |yl+1)Pl+1(yl+1|yl+2)...PL−1(yL−1|yL)sign(yL)
(5.17)

This equation for the function ml(y) could also be written in the following recurrent form:

ml(y) =
∫ +1

−1

dy′Pll′(y|y′)ml′(y′) (5.18)

where

Pll′(y|y′) =
∫ +1

−1

dyl+1...dyl′−1Pl(y|yl+1)Pl+1(yl+1|yl+2)...Pl′−1(yl′−1|y′) (5.19)

Therefore, all the concrete properties of the tree of states, and in particular the values of the overlaps
{ql}, are fully determined by the set of the probability functions (5.11) or (5.19). For the complete
description of a concrete spin glass system all these functions have to be calculated, or at least the
algorithms of their calculations must be derived. In particular, this can be done for the SK model of
spin glass. Unfortunately, the corresponding calculations for this model are rather cumbersome, and
the reader interested in the details may refer to the original papers [13] and [14]. Here only the final
results will be presented.

The ultrametric tree of states which describes the spin glass phase of the SK model is defined by
the random branching process described above, in which the continuous limit L→∞ must be taken.
In this limit, instead of the integer numbers l which define the discrete levels of the hierarchy, it is
more convenient to describe the tree in terms of the selfoverlaps {ql} of the ancestor states. In the
limit L→∞ the discrete parameters {ql} are getting to be the continuous variable 0 ≤ q ≤ 1.

Instead of the discrete ”one-step” functions (5.11) in the continuous limit it is more natural to
describe the tree in terms of the functions (5.19) which define the evolution of the tree from the level
q to the other level q′. It can be proved (an it is this proof which requires to go through somewhat
painful algebra) that in the continuous limit these functions are defined by the following non-linear
diffusion equation:

− ∂

∂q
P =

1
2
∂2

∂y2
P + x(q)mq(y)

∂

∂y
P (5.20)

with the initial condition:

lim
q→q′

Pqq′(y|y′) = δ(y − y′) (5.21)

Here x(q) is the function inverse to q(x) (which is given by the RSB solution, Chapter 3), and the
function mq(y) is the continuous limit of the discrete function (5.18). It can be shown that this function
defines the distribution of the site magnetizations in the ancestor states at the level q of the tree. One
can easily derive from the eqs. (5.18) and (5.20) that the function mq(y) satisfies the following equation:

− ∂

∂q
mq(y) =

1
2
∂2

∂y2
mq(y) + x(q)mq(y)

∂

∂y
mq(y) (5.22)

The above equations fully describe the properties of the ultrametric tree of the spin-glass states of
the SK model.
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5.3 Scaling in a space of spin-glass states

Let us summarize all the results obtained for the spin glass model with the long range interactions:
1) In terms of the formal replica calculations the free energy of the system can be represented it

in terms of the functional F [Q̂] which depends on the n × n replica matrix Q̂ (Section 3.1). In the
thermodynamic limit the leading contribution to the free energy comes from the matrices Q̂∗ which
correspond to the extrema of this functional, and the physical free energy is obtained in the limit
n → 0. In this limit the extrema matrices Q̂∗ are defined by the infinite set of parameters which can
be described in terms of the continuous Parisi function q(x) defined at the interval 0 ≤ x ≤ 1 (Sections
3.3 - 3.4). In the low-temperature region near the phase transition point this function can be obtained
explicitly (Section 3.5, Fig.10).

2) On the other hand, in terms of qualitative physical arguments one can define as the order
parameter the distribution function P (q) which gives the probability to find a pair of pure spin glass
states having the overlap equal to q. In terms of the RSB scheme one can show that the distribution
function P (q) is defined by the Parisi function q(x): P (q) = dx(q)/dq, where x(q) is the inverse function
to q(x) (Section 4.2). The low-temperature solutions for q(x) and for P (q) show that there exists the
continuous spectrum of the overlaps among the pure states.

3) Next, one can introduce the ”three-point” distribution function P (q1, q2, q3) which gives the
probability that arbitrary three pure states have their mutual pair overlaps equal to q1, q2 and q3. In
terms of the RSB scheme this function can be calculated explicitly, and the obtained result show that
the space of the pure states has the ultrametric topology (Section 5.1).

4) It can be shown that the ultrametric tree-like structures can be described in terms of the hier-
archical evolution tree which is defined by the random branching process.

Basing on the above results, the spin-glass phase can be described in the qualitative physical terms
as follows (see also Chapter 2).

At a given temperature T below Tc the space of spin states is splitted into numerous pure states (val-
leys) separated by infinite energy barriers. Although the average site magnetizations mi are different
in different states, the value of the selfoverlap:

q(T ) =
N∑
i

m2
i (5.23)

appears to be the same in all the states. The value of q is the function of the temperature (q(Tc) =
0; q(0) = 1), and near Tc it can be calculated explicitly.

On the other hand, the overlaps qαβ of the pure states cover continuously the whole interval
0 ≤ qαβ ≤ q(T ). (In the presence of external magnetic field h this interval starts from non-zero
value: q0(h, T ) ≤ qαβ ≤ q1(h, T )). The distribution of the values of the overlaps qαβ is described by a
probability function P (q) which depends on the temperature (and the magnetic field). The structure
of the space of the pure states can be described in terms of the ultrametric hierarchical tree discussed
above.

Now, if the temperature is slightly decreased T → T ′ = T − δT , each of the pure states is splitted
into numerous new ”descendant” pure states. These states are characterized by the new value of the
selfoverlap q(T ′) > q(T ). Correspondingly, the interval of their overlaps is getting bigger: 0 ≤ qαβ ≤
q(T ′).

At further decrease of the temperature each of the newly borne pure states is splitted again into
new descendant pure states, and this branching process continues down to zero temperature (q(T →
0)→ 1). The tree of pure states obtained this way has the property of the self-similarity (scaling), and
at any given temperature the natural scale in the space of states is given by the value of q(T ).

Due to infinite energy barriers separating the valleys the ”observable” physics at the given temper-
ature T is defined by only one of the pure states, which in terms of the hierarchical tree corresponds
to one of the ”ancestor” states at the level (scale) q(T ). All these states could be obtained in the
horizontal crossection of the tree at the level q(T ).
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5.4 Phenomenological dynamics

Although the dynamical properties of spin-glasses is extremely hard problem even at the mean-field
level, certain (the most simple) general slow relaxation properties of the disordered systems with
the hierarchical structure of the free energy landscape can be understood rather easily using purely
phenomenological approach [15].

Assume that the free energy landscape in the spin glass phase is of the type shown in Fig.3: big
wells contain a lot of smaller ones, each of the smaller wells contains a lot of even smaller ones, and so
on. Such kind of the landscape could be characterized by the typical value of the finite energy barrier
∆(q) separating the wells at the scale q. Assuming that this landscape has the scaling property, the
dependence of the typical value of the energy barrier ∆ from the scale q could be described by the
following simple scaling law:

∆(q) = ∆0(q − q(T ))−ν ; (q > q(T ) ; ν > 0) (5.24)

Here q(T ) is the value of the selfoverlap of the pure states at the temperature T . The parameter q(T )
is the characteristic scale (the typical scale of the valleys) at which the barriers separating the states
are getting infinite.

Consider now what kind of the relaxation properties could be derived from the above assumptions.
The characteristic time needed to overcome the barrier ∆ is

τ(∆) ∼ τ0 exp(
∆
T

) (5.25)

where τ0 is characteristic microscopic time. Thus, the spectrum of the relaxation times inside the
valley can be represented as follows:

τ(q) ∼ τ0 exp[β∆0(q − q(T ))−ν ] (5.26)

Then the long-time relaxation behaviour of the order parameter

q(t) =
1
N

∑
i

〈σi(0)σi(t)〉 (5.27)

can be estimated (very roughly) as follows:

q(t) ∼
∫ 1

q(T )

dq q exp(− t

τ(q)
) (5.28)

Using (5.26), one gets:

q(t) ∼
∫ 1

q(T )

dq exp
(

ln(q)− t

τ0
exp[−β∆0(q − q(T ))−ν ]

)
(5.29)

In the limit of large times t >> τ0 the saddle-point estimate of the above integral gives the following
result:

q(t) ∼ q(T ) + [
β∆0

ln(t/τ0)
]

1
ν (5.30)

Therefore at large times the order parameter approaches its equilibrium value q(T ) logarithmically
slowly. Apparently, the relaxation behavior of others observable quantities should be of the same slow
type.

Of course, true dynamic properties of spin-glasses are much more complicated, and they can not
be reduced only to the phenomenon of extremely slow relaxation. Actually, the main property of
spin-glasses is that they can not reach true thermodynamic equilibrium at any finite observation time.
Since the theoretical achievements in understanding of the dynamical properties of spin-glasses are
far from being quite impressive yet, in the next Chapter we consider the results of the experimental
observations of the relaxation phenomena in real spin-glass magnets.
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6 Experiments

In this Chapter we will consider classical experiments which have been performed on real spin glass
materials, aiming to check to what extent the qualitative picture of the spin-glass state described in
previous Chapters does take place in real world. The main problem of the experimental observations
is that the concepts and quantities which are very convenient in theoretical considerations are rather
far from the experimental realities, and it is a matter of the experimental art to invent convincing
experimental procedures which would be able to confirm (or reject) the theoretical predictions.

A series of such brilliant experiments has been performed by M.Ocio, J.Hammann, F.Lefloch and
E.Vincent (Saclay), and M.Lederman and R.Orbach (UCLA) [16]. Most of these experiments have been
done on the crystals CdCr1.7In0.3S4. The magnetic disorder there is present due to the competition
of the ferromagnetic nearest neighbors interactions and the antiferromagnetic higher order neighbors
interactions. This magnet has been already systematically studied some time ago [17], and its spin
glass phase transition point T = 16.7K is well established. Some of the measurements have been also
performed on the metallic spin glasses AgMn [18] and the results obtained were qualitatively quite
similar. It indicates that presumably the qualitative physical phenomena observed, do not depend very
much on the concrete realization of the spin glass system.

6.1 Aging

The phenomenon of aging in spin glasses is known already for many years [19]. It is not directly
connected with the hierarchy of the spin-glass states, but it explicitly demonstrates the absence of true
thermodynamic equilibrium in spin glasses.

The procedure of the experiments is in the following. The sample is cooled down into the spin-glass
state in the presence of weak uniform magnetic field h. Then, at a constant temperature T < Tc
the sample is kept in this magnetic field during some waiting time tw. Finally the magnetic field is
switched off, and the measurements of the relaxation of the thermoremainent magnetization (TRM) is
performed. The results of these measurements for different values of tw is shown in Fig.12.

The first important result of these measurements is that the observed relaxation is extremely slow
and non-exponential (note, that the typical values of tw are well macroscopic: minutes, hours, days).
More important, however, is that the relaxation appears to be non-stationary: the relaxation processes
which take place in the system after switching off the field depend on the ”lifetime” tw of the system
before the measurement was started. The spin glass is getting ”stiffer” with the time: the bigger tw
is, the slower the relaxation goes on. Therefore, the results of the measurements depend on two time
scales: the observation time t, and the time which has passed after the system came into the spin
glass state, the ”aging” time tw. It is crucial that at all experimentally accessible time scales it has
been observed no indication that the relaxation curves are reaching saturation at some limiting curve
corresponding to tw = ∞. Thus, at any experimentally accessible times such system remains out of
the true thermal equilibrium.

Note that it is not the presence of the magnetic field, which is responsible for the observed phe-
nomenon. The magnetic field here is just the instrument which makes possible to demonstrate it. One
can also perform the ”mirror” experiment: the system is cooled down into the spin glass state in the
zero magnetic field, then it is kept at a constant temperature T < Tc during some waiting time tw, and
finally the magnetic field is switched on and the relaxation of the magnetization is measured. Again,
the results of the measurements essentially depend on tw. Moreover, for any given value of tw the
curves obtained in these two types of the experiments appear to be symmetric: the sum of the values
of the magnetizations obtained in these ”mirror” experiments appears to be time independent constant
(Fig.13).

6.2 Temperature cycles and the hierarchy of states

Now we consider two types of the experiments which are supposed to reveal the effects connected with
the existence of the hierarchical tree of spin-glass states.

In the experiments of the first type, the sample in a weak magnetic field is cooled down into the
spin-glass phase. Then, it is kept at a constant temperature T < Tc during some waiting time tw1 .
After that the temperature is slightly changed down to T ′ = (T − ∆T ) (where the value of ∆T is
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small), and the sample is kept at this temperature during waiting time tw3 . Then the temperature is
changed up to the original value T again, and the sample is kept at this constant temperature during
waiting time tw2 . After that the magnetic field is switched off and the relaxation of the magnetization
is measured. The results for different values of ∆T are shown in Fig.14.

The main result of these measurements is in the following. It is clear from the plots of Fig.14 that
if the value of the temperature step ∆T is not too small, then all the relaxation curves appear to be
identical to those in the usual aging experiments (Section 6.1) with the waiting time tw = tw1 + tw2 .
It means that for the processes of equilibration at the temperature T , the system remained effectively
completely frozen during all the time period tw3 when it was kept at the temperature (T −∆T ).

In the experiments of the second type, again, the sample in the presence of a weak magnetic field
is cooled down into the spin-glass phase, and then it is kept at a constant temperature T < Tc during
waiting time tw1 . Next, the sample is slightly heated up to the temperature T ′ = (T + ∆T ), (where
the value of ∆T is small) and after relatively short time interval it is cooled down again to the original
temperature T . Then, it is kept at this constant temperature during waiting time tw2 , and after that,
the magnetic field is switched off and the relaxation of the magnetization is measured. The results for
different values of ∆T are shown in Fig.15.

In this case one finds that if the value of the temperature step ∆T is not too small, then all the
relaxation curves appear to be identical to those in the usual aging experiments (Section 6.1) with the
waiting time tw = tw3 . It means that even slight heating is enough to wipe out all the aging which has
been ”achieved” at the temperature T during the time period before heating. In other words, after the
slight heating jump the equilibration processes start all over again, while all the ”pre-history” of the
sample appears to be wiped out. (Note that the temperature (T + ∆T ) is still well below Tc.)

Such quite asymmetric response of the system with respect to the considered temperature cycles of
cooling and heating can be well explained in terms of the qualitative physical picture of the continuous
hierarchy of the phase transitions and the tree-like structure of the spin-glass states.

The qualitative interpretation of the results described above is in the following. The process of
thermal equilibration, as time goes on, can be imagined as the process of jumping over higher and
higher energy barriers in the space of states. After some waiting time tw the system covers certain
part of the configurational space, which could be characterized by the maximum energy barriers of
the order of ∆max ' T log(tw/τ) (here τ is characteristic microscopic time). It is assumed that any
scale in the configurational space is characterized by certain typical value of the energy barriers (see
also Section 5.4). Then the results of the experiments with the temperature cycles of cooling could be
interpreted as follows. During the time period tw1 when the system is kept at the temperature T , it
covers certain finite part of the configurational space inside one of the valleys. After cooling down to
the temperature (T −∆T ) this part of the configurational space is splitted into several smaller valleys
separated by infinite energy barriers. Besides, the finite energy barriers separating the metastable
states inside the valleys are getting higher, while some of these metastable states are splitted into
many new ones. Then, during the time tw3 the system is trying to cover these new states being locked
by infinite barriers in a limited part of the configurational space. Therefore, whatever time has passed
at the temperature (T −∆T ) the system can cover only those states, which are the descendants of the
states already occupied at the temperature T , and not more. Note that this phenomenon of ergodicity
breaking is just the consequence of the phase transition which occurred in the system due to cooling
down from the temperature T to the temperature (T −∆T ). Then, after heating back to the original
temperature T all these descendant states are merging together into their ancestors, and the process
of thermal equilibration at the temperature T continues again, as if there was no time interval when
the system spent at the temperature (T −∆T ).

In the experiments with the temperature cycles of heating the effects to be expected are different.
After heating to the temperature (T + ∆T ) the states occupied by the system during the time tw1 at
the temperature T would merge together into smaller number of their ancestor states. If the value
of ∆T is not too small, such that q(T + ∆T ) < q′, where q(T ) is the selfoverlap of the states at the
temperature T , and q′ is the selfoverlap of the common ancestor of the states occupied during time
interval tw1 , then after heating all the occupied states would merge together into one common ancestor
state. Within this limited part of the phase space this effectively corresponds to the paramagnetic
phase transition. Therefore, all the thermal equilibration ”achieved” at the temperature T will be
wiped out, and after cooling back to the original temperature T the process of thermal equilibration
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will start all over again.
In brief, the results of the considered experiments could be summarized as follows. If the spin-glass

system is equilibrating at some temperature T < Tc, then any temporary heating would eliminate
all the equilibration achieved, while any cooling for any time period, just postpones the equilibration
processes at this temperature.

6.3 Temperature dependence of the energy barriers

The scheme of the above experiments can be slightly changed so that it would make possible to estimate
the temperature dependence of the (finite) free energy barriers.

The experiments have been done on the metallic spin glasses AgMn (Tc = 10.4K). The scheme
of the experiments is in the following. First, the spin glass is aging in a weak magnetic field during
the waiting time tw at the temperature (T − ∆T ). Then the sample is quickly heated up to the
temperature T , and simultaneously the magnetic field is switched off. After that, the measurements
of the relaxation of the magnetization is observed.

The results are shown in Fig.16. These plots clearly show, that if the value of ∆T is not too small,
then the relaxation curves obtained are practically identical to those in the usual aging experiments at
the same temperature T but with some other waiting time teffw < tw.

Assuming that the values of the finite energy barriers separating metastable states essentially
depend on the temperature this phenomenon can also be easily explained in terms of the hierarchical
structure of the spin-glass states. Since the free energy barriers at the temperature (T − ∆T ) must
be higher than corresponding barriers at the temperature T , the region of the phase space occupied
by the system at the temperature (T −∆T ) is bounded by the barriers which are getting smaller at
the temperature T . Correspondingly, the time needed to cover this part of the phase space at the
temperature T is smaller than that at the temperature (T −∆T ). The crucial point is in the following.
At the initial moment of the measurements the values of the temperature and the magnetic field in
these two types of the experiments are the same, and if the value of teffw is chosen correctly, then the
long-time relaxation curves obtained appear to be identical. It means that the region of the phase space
occupied by the system at the initial moment of the measurements in both cases must be the same.
If the system is equilibrating at the temperature T this region can be characterized by the maximum
value of the typical energy barriers:

∆(T ; teffw ) = T log(
teffw

τ
) (6.1)

Correspondingly, if the equilibration takes place at the temperature (T −∆T ), the typical value of the
maximum barriers is:

∆(T −∆T ; tw) = (T −∆T ) log(
tw
τ

) (6.2)

Since the relaxation processes both after the aging at temperature T during the time tw and after
the aging at the temperature (T−∆T ) during the time teffw are the same, the initial state of the system
must also be the same. Therefore, one can conclude that ∆(T −∆T ) and ∆(T ) are the heights of the
same barrier at different temperatures. Basing on this conclusion and using the experimental data of
Fig.16, one can get the plot for the dependence of the value ∂∆/∂T from ∆ at the given temperature.
In Fig.17 the dependence of ∆(T −∆T ) from ∆(T ) is shown for T = 9K, 9.5K and 10K at fixed value
of the temperature jump ∆T = 20mK. These plots demonstrate that within the experimental errors
the dependencies obtained at different T coincide.

In Fig.18 the corresponding dependence of the value ∂∆/∂T from ∆ is shown. Within the ex-
perimental errors the value of ∂∆/∂T depends only on ∆ and it does not depend directly from the
temperature. The dashed line in the Fig.18 is the power law fitting of the experimental data:

d∆
dT
' a∆6 ; a = 2.9× 10−7 (6.3)

Integrating this equation, one gets:
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∆(T ) ' [
T − T ∗

Tc
]−1/5 ; T > T ∗ (6.4)

The temperature T ∗ is the integration constant, which actually labels the concrete barrier. In other
words, each barrier can be characterized by the critical temperature T ∗ at which this (finite at T > T ∗)
barrier becomes infinite. In this sense the critical temperature Tc can be interpreted just as the
maximum possible value of T ∗.

In conclusion, the experiments considered above clearly demonstrate the absence of the thermal
equilibrium in the spin-glass phase at all experimentally accessible time scales. These experiments also
demonstrate the existence of the whole spectrum of the free energy barriers up to infinite values, at
any temperature below Tc. The results of the measurements show that the barriers heights strongly
depend on the temperature and at any temperature T < Tc certain barriers are getting infinite.
This phenomenon clearly indicates on the presence of the ergodicity breaking phase transition at any
temperature below Tc, which results in the continuous process of fragmentation of the phase space into
smaller and smaller valleys with decrease of the temperature.
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Part II. CRITICAL PHENOMENA AND QUENCHED
DISORDER

7 Scaling Theory of the Critical Phenomena

7.1 The Ginzburg-Landau theory

We begin our study of the critical phenomena at the phase transitions of the second order with the
mean-field approximation discussed in Introduction (Section 1.2). The starting point for further con-
sideration is the mean-field expansion of the free energy in the vicinity of the critical point Tc, eq.(1.28),
Fig.1:

f(φ) =
1
2
τφ2 +

1
4
gφ4 − hφ (7.1)

where τ = (T − Tc)/Tc � 1 is the reduced temperature, h is the external magnetic field. Here the
”coupling constant” g is the parameter of the theory, and the order parameter φ = 〈σi〉 is the average
spin magnetization. The value of φ is determined from the condition of minimum of the free energy,
df/dφ = 0:

τφ+ gφ3 = h (7.2)

and d2f/dφ2 > 0.
In the absense of the external magnetic field (h = 0) at temperatures above Tc, (τ > 0) the free

energy has only one (trivial) minimum at φ = 0. Below the critical point, τ < 0, the free energy has
two minima, and the corresponding solutions of the saddle-point equation (7.2) are:

φ(τ) = ±

√
|τ |
g

(7.3)

As T → Tc from below, φ(T )→ 0.
As it has been already discussed in the Introduction, this very simple mean-field theory demonstrate

on a qualitative level the fundamental phenomenon called the spontaneous symmetry breaking. At
the critical temperature T = Tc the phase transition of the second order occurs, such that in the low
temperature region T < Tc the symmetry with respect to the global change of the signs of the spins is
broken, and the two (instead of one) ground states appear. These two states differ by the sign of the
average spin magnetization, and they are separated by the macroscopic barrier of the free energy.

In a small nonzero magnetic field (h� 1) the qualitative shape of the free energy is shown in Fig.1b.
In this case the saddle-point equation (7.2) always has nonzero solution for the order parameter φ at
all temperatures. In particular, in the low-temperature region (τ < 0) we find:

φ '

{ √
|τ |
g + h

2τ if h� hc(τ)
(hg )1/3 if h� hc(τ)

(7.4)

where

hc(τ) =
1
√
g
|τ |3/2 (7.5)

whereas in the high-temperature region (τ > 0):

φ '
{ h

τ if h� hc(τ)
(hg )1/3 if h� hc(τ) (7.6)

Thus, at h 6= 0 the phase transition is ”smoothed out” in the temperature interval |τ | ∼ h2/3 [eq.(7.5)]
around Tc.
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The physical quantity, which describes the reaction of the system on the infinitely small magnetic
field is called susceptibility. It is defined as follows:

χ =
∂φ

∂h
|h=0 (7.7)

According to eqs.(7.4)-(7.6) one finds that near the critical point the susceptibility becomes divergent:

χ '
{
τ−1 at T > Tc
1
2 |τ |

−1 at T < Tc
(7.8)

For the so called nonlinear susceptibility χ(h) = ∂φ/∂h in the close vicinity of the critical point
(|τ |3/2 � h

√
g), we get:

χ(h) ' h−2/3 (7.9)

The other basic physical quantity is the specific heat, which is defined as follows:

C = −T ∂
2f

∂T 2
(7.10)

For the specific heat near the critical point (in the zero magnetic field), according to the eq.(7.3)-(7.1)
we obtain:

C '
{
const = 1

2g at T > Tc
0 at T < Tc

(7.11)

Of course, all the above results which were obtained in terms of very primitive mean-field ap-
proximation cannot pretend to be reliable. Nevertheless, on a qualitative level they demonstrate very
important physical phenomenon: near the point of the second-order phase transition at least some of
the physical quantities become singular (or non-analytic). Now let us consider one simple and natural
improvement of the mean-field theory considered above.

The apparent defect of the mean-field approximation given above is that it does not take into
account correlations among spins. This could be easily amended if we are interested in the studies of
only large-scale phenomena which will be shown to be responsible for the leading singularities in the
thermodynamical functions. In this case the order parameters φi are almost spatially homogeneous,
and they can be represented as slowly varying (with small gradients) functions of the continuous space
coordinates. Then, the interaction term in the exact lattice Hamiltonian (1.14) can be approximated
as follows:

1
2

∑
<i,j>

φiφj →
1
2

∫
dDx[φ2(x) + (∇φ(x))2] (7.12)

Correspondingly, the Hamiltonian in which only small spatial fluctuations of the order parameter are
taken into account can be written as follows:

H =
∫
dDx[

1
2

(∇φ(x))2 +
1
2
τφ2(x) +

1
4
gφ4(x)− hφ(x)] (7.13)

The theory which is based on the above Hamiltonian is called the Ginzburg-Landau approach. In fact
the Ginzburg-Landau Hamiltonian is nothing but the first few terms of the expansion in powers of φ
and (∇φ). In the vicinity of the (second-order) phase transition point, where the order parameter is
small and the leading contributions come from large-scale fluctuations, such an approach looks quite
natural.

Consider the contributions caused by small fluctuations at the background of the homogeneous
order parameter φ0 =

√
|τ |/g:

φ(x) = φ0 + ϕ(x) (7.14)

where ϕ(x)� φ0.
For simplicity let us consider the case of the zero magnetic field. Then the expansion of the

Hamiltonian (7.13) to the second order in ϕ yields:
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H = H0 +
∫
dDx[

1
2

(∇ϕ(x))2 + |τ |ϕ2(x)] (7.15)

In terms of the Fourier representation

ϕ(x) =
∫

dDk

(2π)D
ϕ(k) exp(−ikx) (7.16)

one gets:

H =
1
2

∫
dDk

(2π)D
(k2 + 2|τ |) | ϕ(k) |2 +H0 (7.17)

Therefore, for the correlation function

G0(k) ≡ 〈| ϕ(k) |2〉 =
∫
Dϕ(k) | ϕ(k) |2 exp(−H[ϕ])∫

Dϕ(k) exp(−H[ϕ])
(7.18)

one obtains the following result:

G0(k) =
1

k2 + 2|τ |
(7.19)

Besides, it is obvious that

〈ϕ(k)ϕ(k′)〉 = G0(k)δ(k + k′) (7.20)

Therefore, for the spatial correlation function

G0(x) = 〈〈φ(0)φ(x)〉〉 ≡ 〈φ(0)φ(x)〉 − 〈φ(0)〉〈φ(x)〉 =

= 〈ϕ(0)ϕ(x)〉 =
∫

dDk
(2π)D

〈| ϕ(k) |2〉 exp(ikx)
(7.21)

we obtain:

G0(x) ∼

{
| x |−(D−2) for | x |� Rc(τ) = 1√

2|τ |
; (a)

exp(− | x | /Rc) for | x |� Rc(τ); (b)
(7.22)

Here the quantity

Rc(τ) ∼ |τ |−1/2 (7.23)

is called the correlation length.
Thus, the situation near Tc (|τ | � 1) looks as follows. At scales much larger than the correlation

length Rc(τ)� 1 the fluctuations of the field φ(x) around its equilibrium value φ0 (φ0 = 0 at T > Tc,
and φ0 =

√
|τ |/g at T < Tc) become effectively independent (their correlations decay exponentially,

eq.(7.22(b)). On the other hand, at scales much smaller than Rc(τ), in the so called fluctuation region,
the fluctuations of the order parameter are strongly correlated, and their correlation functions exibit
weak power-law decay, eq.(7.22(a)). Therefore, inside the fluctuation region at scales � Rc(τ) the
gradient, or the fluctuation term of the Hamiltonian (7.13) becomes crucial for the theory. In the
critical point the fluctuation region becomes infinite.

Let us estimate to what extent the above simple considerations are correct. The expansion (7.15)
could be used and the result (7.22) is justified only if the characteristic value of the fluctuations ϕ are
small in comparison with the equilibrium value of the order parameter φ0. Since the correlation length
Rc is the only relevant spatial scale which exists in the system near the phase transition point, the
characteristic value of the fluctuations of the order parameter could be estimated as follows:

ϕ2 ≡ 1
RDc

∫
|x|<Rc

dDx〈ϕ(0)ϕ(x)〉 ∼ R−(D−2)
c (7.24)

The above simple mean-field estimates for the critical behavior are grounded only if the value of ϕ2 is
much smaller than the corresponding value of the equilibrium order parameter φ2

0:
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R−D+2
c � |τ |

g
(7.25)

Using (7.23) we find that this condition is satisfied if:

g|τ |
D−4

2 � 1 (7.26)

Therefore, if the dimension of the system is bigger than 4, near the phase transition point, τ → 0, the
condition (7.26) is always satisfied. On the other hand, at dimensions D < 4 this condition is always
violated near the critical point.

Thus, these simple estimates reveal the following quite important points:
1) If the dimension of the considered system is bigger than 4, then its critical behavior in the

vicinity of the second order phase transition is successfully described by the mean-field theory.
2) If the dimension of the system is less than 4, then, according to eq.(7.26), the mean-field approach

gives correct results only in the range of temperatures not too close to Tc:

τ � τ∗(D, g) ≡ g
2

4−D , (τ � 1) (7.27)

(here it is assumed that g � 1, otherwise there would be no mean-field critical region at all). In the
close vicinity of Tc, |τ | � τ∗, the other (non-Gaussian) type of the critical behavior can be expected
to occur.

7.2 Critical Exponents

In general, it is believed that critical behavior of the physical quantities near the phase transition point
can be described in terms of the so-called critical exponents. In particular, for the quantities considered
above, the critical exponents are defined as follows:

Correlation length Rc ∼| τ |−ν at h� hc(τ)
Rc ∼ h−µ at h� hc(τ)

Order parameter: φ0 ∼ |τ |β at h� hc(τ); τ < 0
φ0 ∼ h1/δ at h� hc(τ)

Specific heat: C ∼| τ |−α at h� hc(τ)

Susceptibility: χ ∼| τ |−γ at h� hc(τ)
χ ∼ h1/δ−1 at h� hc(τ)

Correlation function G(x) ∼| x |−D+2−η at | x |� Rc

(7.28)

where the value of the critical field is hc(τ) ∼| τ |ν/µ (this estimate follows from the comparison of the
correlation lengths in small and in large fields).

In fact, not all the critical exponents listed in eq.(7.28) are independent. One can easily derive (see
below) the following relations among them:

α = 2−Dν (7.29)

δ =
D + 2− η
D − 2 + η

(7.30)

γ = (2− η)ν (7.31)

2β = 2− γ − α (7.32)

µ =
2

D + 2− η
(7.33)

For 7 exponents there are exist 5 equations, which means that only two exponents are independent.
In other words, to find all the critical exponents one needs to calculate only two of them.
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In particular, the Ginzburg-Landau mean-field theory considered above, gives: ν = 1/2 and η = 0
(see eqs.(7.22)-(7.23)). Using eqs.(7.29)-(7.33) one easily finds the rest of the exponents: α = −(D −
4)/2, δ = D+2

D−2 , γ = 1, β = (D − 2)/4, µ = 1/3. These critical exponents fully describe the critical
behavior of any scalar field D-dimensional system with D ≥ 4.

Let us now derive the relations (7.29)-(7.33). According to the definition of specific heat:

C = −T ∂
2f

∂T 2
(7.34)

one gets:

C =
1
V

∫
dDx

∫
dDx′[〈φ2(x)φ2(x′)〉 − 〈φ2(x)〉〈φ2(x′)〉] ∼ 1

RDc
〈Φ〉2 (7.35)

where

Φ =
∫
|x|<Rc

dDxφ2(x) (7.36)

According to eq.(7.13), the equilibrium energy density of the system (at scales bigger than Rc) is
proportional to |τ |Φ. Thus, the equilibrium value of 〈Φ〉 is defined by the condition |τ |〈Φ〉 ∼ T
(T ' Tc = 1 in our case). Therefore, from eq.(7.35) one gets:

C ∼ R−Dc |τ |−2 ∼ |τ |Dν−2 (7.37)

On the other hand, according to the definition of the critical exponent α, C ∼ |τ |−α, and one obtains
the eq.(7.29).

Using the definitions of the susceptibility, as well as the critical exponents of the correlation function
η and that of the correlation length ν, eq.(7.28), one obtains:

χ = ∂〈φ〉
∂h |h=0 =

∫
dDx〈〈φ(0)φ(x)〉〉 ∼

RDc R
2−D−η
c ∼ |τ |−ν(2−η)

(7.38)

On the other hand: χ ∼ |τ |−γ , which provides the eq.(7.31).
The value of the susceptibility, eq(7.38), can be estimated in the other way:

χ ∼ RDc φ2
0 ∼ |τ |−Dν+2β (7.39)

This yields: γ = Dν − 2β. Using eq.(7.29), one gets eq.(7.32).
Now let us define the value of the order parameter in the region, which is less than the correlation

length:

ψ ≡
∫
|x|<Rc

dDxφ(x) (7.40)

The characteristic value of the field ψ is:

ψc ≡
√
〈ψ2〉 ∼

∼ (RDc
∫
|x|<Rc d

Dx〈φ(0)φ(x)〉)1/2 ∼ R
D+2−η

2
c

(7.41)

The critical value of the external field hc(τ) is defined by the condition:

ψchc ∼ T (= 1) (7.42)

Therefore, at this value of the field:

Rc(h) ∼ h−
2

D+2−η (7.43)
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which yields eq.(7.33).
On the other hand: ψc ∼ φ0Rc. Using the condition (7.42), the result (7.43) and the definition:

φ0 ∼ h1/δ, one gets:

ψc ∼
1
h
∼ h 1

δ h−
2D

D+2−η (7.44)

Simple algebra gives the relation (7.30).

In actual calculations one usually obtains the critical exponent of the correlation length ν, and that
of the correlation function η, while the rest of the exponents are derived from the relations (7.29)-(7.33)
automatically.

7.3 Scaling

The concepts of the critical exponents and the correlation length are crucial for the theory of the
second-order phase transitions. In the scaling theory of the critical phenomena it is implied that Rc is
the only relevant spatial scale which exists in the system near Tc. As we have seen in the GL mean-field
approach discussed above, at scales smaller than Rc all the spatial correlations are power-like, which
means that at scales much smaller than the correlation length everything must be scale-invariant. On
the other hand, in the phase transition point the correlation length is infinite. Therefore, the properties
of the system at scales smaller then Rc must be equivalent to those of the whole system at the phase
transition point.

The other important consequence of scale invariance is that the microscopic details of a system
(lattice structure, etc.) should not be expected to affect the critical behavior. What may appear to
be relevant for the critical properties of a system are only its ”global” characteristics, such as space
dimensionality, topology of the order parameter, etc. All the above arguments make a basis for the
so-called scaling hypothesis, which claims that the macroscopic properties of a system at the critical
point do not change after a global change of the spatial scale.

Let us consider, in brief, what the immediate general consequences of such a statement would be.
Let the Hamiltonian of a system be the following:

H =
∫
dDx[

1
2

(∇φ(x))2 +
∑
n=1

hnφ
n(x)] (7.45)

Here the parameters hn describe a concrete system under consideration. In particular: h1 ≡ −h is
the external field; h2 ≡ τ is the ”mass” in the Ginzburg-Landau theory; h4 ≡ 1

4g; and the rest of the
parameters could describe some other types of interactions. After the scale transformation:

x → λx (λ > 1) (7.46)

one gets:

1
2

∫
dDx(∇φ(x))2 → 1

2λ
D−2

∫
dDx(∇φ(λx))2

hn
∫
dDxφn(x) → λD

∫
dDxφn(λx)

(7.47)

To leave the gradient term of the Hamiltonian (which is responsible for the scaling of the correlation
functions) unchanged, one has to rescale the fields:

φ(λx) → λ−∆φφ(x) (7.48)

with

∆φ =
D − 2

2
(7.49)

The scale dimensions ∆φ defines the critical exponent of the correlation function:

G(x) = 〈φ(0)φ(x)〉 ∼ |x|−2∆φ (7.50)
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To leave the Hamiltonian (7.45) unchanged after these transformations one must also rescale the
parameters hn:

hn → λ−∆nhn (7.51)

where

∆n =
1
2

(2− n)D + n (7.52)

The quantities ∆n are called the scale dimensions of the corresponding parameters hn. In particular:

∆1 ≡ ∆h =
1
2
D + 1 (7.53)

∆2 ≡ ∆τ = 2 (7.54)

∆4 ≡ ∆g = 4−D (7.55)

Correspondingly, the rescaled parameters hλ, τλ and gλ of the Ginzburg-Landau Hamiltonian are:

hλ = λ∆hh (7.56)

τλ = λ∆τ τ (7.57)

gλ = λ∆gg (7.58)

These equations demonstrate the following points:
1) If the initial value of the ”mass” τ is non-zero, then the scale transformations make the value of

the rescaled τλ to grow, and at the scale

λc ≡ Rc = |τ |−
1

∆τ (7.59)

the value of τλ becomes of the order of 1. This indicates that at λ > Rc we are getting out of the
scaling region, and the value Rc must be called the correlation length. Moreover, according to eq.(7.59)
for the critical exponent of the correlation length we find:

ν =
1

∆τ
(7.60)

2) The value (and the critical exponent) of the critical field hc(τ) can be obtained from the
eqs.(7.53),(7.56) along the same lines:

hλ|λ=Rc = R∆h
c hc ∼ 1 ⇒

⇒ hc ∼ R−∆h
c ∼ |τ |

∆h
∆τ

(7.61)

3) If the dimension of the system is greater than 4, then according to eqs.(7.55) and (7.58), ∆g < 0,
and the rescaled value of the parameter gλ tends to zero at infinite scales. Therefore, the theory
becomes asymptotically Gaussian in this case. That is why the systems with dimensions D > 4 are
described correctly by the Ginzburg-Landau theory.

On the other hand, at dimension D < 4, ∆g > 0, and the rescaled value of gλ grows as the scale
increases. In this case the situation becomes highly nontrivial because the asymptotic (infinite scale)
theory becomes non-Gaussian. Nevertheless, if the dimension D is formally taken to be close to 4, such
that the value of ε = 4 −D is treated as the small parameter, then the deviation from the Gaussian
theory is also small in ε, and this allows us to treat such systems in terms of the perturbation theory
(see next Section). In the lucky case, if for some reasons the series in ε would appears to be ”good”
and quickly converging, then one could hope to get the critical exponents close to the real ones if we
set ε = 1 in the final results.

It is a miracle, but although the actual series in ε can by no means be considered as ”good” (it is
not even converging), the results for the critical exponents given by the first three terms of the series
at ε = 1 (D = 3) appear to be very close to the real ones.

45



7.4 Renormalization-group approach and ε-expansion

Let us assume that at large scales the asymptotic theory is described by the Hamiltonian (7.13) (for
simplicity the external field h is taken to be zero):

H =
∫
dDx[

1
2

(∇φ(x))2 +
1
2
τφ2(x) +

1
4
gφ4(x)] (7.62)

where the field φ(x) is supposed to be slow-varying in space, such that the Fourier-transformed field
φ(k):

φ(x) =
∫
|k|<k0

dDk

(2π)D
φ(k) exp(ikx) (7.63)

has only long-wave components: | k |< k0 � 1. The parameters of the Hamiltonian are also assumed
to be small: |τ | � 1; g � 1. Correspondingly, the Fourier-transformed Hamiltonian is:

Hk0 = 1
2

∫
|k|<k0

dDk
(2π)D

k2 | φ(k) |2 + 1
2τ
∫
|k|<k0

dDk
(2π)D

| φ(k) |2 +

+ 1
4g
∫
|k|<k0

dDk1d
Dk2d

Dk3d
Dk4

(2π)4D φ(k1)φ(k2)φ(k3)φ(k4)δ(k1 + k2 + k3 + k4)
(7.64)

In the most general terms the problem is to calculate the partition function:

Z = (
k0∏
k=0

∫
dφ(k)) exp{−Hk0(φ)} (7.65)

and the corresponding free energy: F = −ln(Z).

The idea of the renormalization-group (RG) approach is described below.
In the first step one integrates only over the components of the field φ(k) in the limited wave band

λk0 < k < k0, where λ� 1. In the result we get a new Hamiltonian which depends on the new cutoff
λk0:

exp{−H̃λk0 [φ]} ≡ (
k0∏

k=λk0

∫
dφ(k)) exp(−Hk0 [φ]) (7.66)

It is expected that under certain conditions the new Hamiltonian H̃λk0 [φ] would have the structure
similar to the original one, given by eq.(7.64):

H̃λk0 = 1
2 ã(λ)

∫
|k|<λk0

dDk
(2π)D

k2 | φ(k) |2 + 1
2 τ̃(λ)

∫
|k|<λk0

dDk
(2π)D

| φ(k) |2 +

+ 1
4 g̃(λ)

∫
|k|<λk0

dDk1d
Dk2d

Dk3d
Dk4

(2π)4D φ(k1)φ(k2)φ(k3)φ(k4)δ(k1 + k2 + k3 + k4) + (...)
(7.67)

All additional terms which could appear in H̃λk0 [φ] after the integration (7.66) (denoted by ”(...)”) will
be shown to be irrelevant for τ � 1, g � 1, λ� 1, and ε = (4−D)� 1. In fact, the leading terms
in (7.67) will be shown to be large in the parameter ξ ≡ ln(1/λ)� 1, conditioned that εln(1/λ)� 1.

In the second step one makes the inverse scaling transformation (see Section 7.3) with the aim of
restoring the original cutoff scale k0:

k → λk

φ(λk) → θ(λ)φ(k)
(7.68)

The parameter θ(λ) should be chosen such that the coefficient of the k2 | φ(k) |2 term remains the
same as in the original Hamiltonian (7.64):

θ = λ−
D+2

2 (ã(λ))−1/2 (7.69)
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The two steps given above compose the so-called renormalization transformation. The renormalized
Hamiltonian is:

H
(R)
k0

= 1
2

∫
|k|<k0

dDk
(2π)D

k2 | φ(k) |2 + 1
2τ

(R)(λ)
∫
|k|<k0

dDk
(2π)D

| φ(k) |2 +

+ 1
4g

(R)(λ)
∫
|k|<k0

dDk1d
Dk2d

Dk3d
Dk4

(2π)4D φ(k1)φ(k2)φ(k3)φ(k4)δ(k1 + k2 + k3 + k4)
(7.70)

This Hamiltonian depends on the original cutoff k0 whereas its parameters are renormalized:

τ (R)(λ) = λ−2ã(λ)−1τ̃(λ) (7.71)

g(R)(λ) = λ−(4−D)ã(λ)−2g̃(λ) (7.72)

The above the RG transformation must be applied (infinitely) many times, and then the problem
is to study the limiting properties of the renormalized Hamiltonian, which is expected to describe the
asymptotic (infinite scale) properties of the system. In particular, it is hoped that the asymptotic
Hamiltonian would arrive at some fixed point Hamiltonian H∗ which would be invariant with respect
to the above RG transformation. The hypothesis about the existence of the fixed point (non-Gaussian)
Hamiltonian H∗ which would be invariant with respect to the scale transformations in the critical point
is nothing but a more ”mathematical” formulation of the scaling hypothesis discussed in the Section
7.3.

Let us consider the RG procedure in some more detail. To get the RG eqs.(7.71)-(7.72) in explicit
form one has to obtain the parameters ã(λ), τ̃(λ), g̃(λ) by integrating ”fast” degrees of freedom in
eq.(7.66). Let us separate the ”fast” fields (with λk0 < |k| < k0) and the ”slow” fields (with |k| < λk0)
explicitly:

φ(x) = φ̃(x) + ϕ(x) ;

φ̃(x) =
∫
|k|<λk0

dDk
(2π)D

φ̃(k) exp(ikx); ϕ(x) =
∫
λk0<|k|<k0

dDk
(2π)D

ϕ(k) exp(ikx)
(7.73)

Then the Hamiltonian (7.64) can be represented as follows:

Hk0 [φ̃, ϕ] = Hλk0 [φ̃] +
1
2

∫
λk0<|k|<k0

dDk

(2π)D
G−1

0 (k) | ϕ(k) |2 + V [φ̃, ϕ] (7.74)

where

G0(k) = k−2 (7.75)

and

V [φ̃, ϕ] = 1
2τ
∫
λk0<|k|<k0

dDk
(2π)D

| ϕ(k) |2 +

+ 3
2g
∫
dDk1d

Dk2d
Dk3d

Dk4
(2π)4D φ̃(k1)φ̃(k2)ϕ(k3)ϕ(k4)δ(k1 + k2 + k3 + k4) +

+g
∫
dDk1d

Dk2d
Dk3d

Dk4
(2π)4D φ̃(k1)ϕ(k2)ϕ(k3)ϕ(k4)δ(k1 + k2 + k3 + k4) +

+g
∫
dDk1d

Dk2d
Dk3d

Dk4
(2π)4D φ̃(k1)φ̃(k2)φ̃(k3)ϕ(k4)δ(k1 + k2 + k3 + k4) +

+ 1
4g
∫
dDk1d

Dk2d
Dk3d

Dk4
(2π)4D ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4)δ(k1 + k2 + k3 + k4)

(7.76)

In standard diagram notations the interaction term V [φ̃, ϕ] is shown in Fig.19, where the wavy lines
represent the ”slow” fields φ̃, the straight lines represent the ”fast” fields ϕ, the solid circle represents
the ”mass” τ , the open circle represents the interaction vertex g, and at each vertex the sum of entering
”impulses” k is zero.

Then, the integration over the ϕ’s, eq.(7.66), yields:
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exp{−H̃λk0 [φ̃]} = exp{−Hλk0 [φ̃]}〈exp{−V [φ̃, ϕ]}〉 (7.77)

where the averaging 〈(...)〉 is performed as follows:

〈(...)〉 ≡ (
k=k0∏
k=λk0

∫
dϕ(k)) exp{−1

2

∫
λk0<|k|<k0

dDk

(2π)D
G−1

0 (k) | ϕ(k) |2}(...) (7.78)

Standard perturbation expansion in V gives:

H̃λk0 [φ̃] = Hλk0 [φ̃] + 〈V 〉 − 1
2

[〈V 2〉 − 〈V 〉2] (7.79)

In terms of the diagrams, Fig.19, the averaging 〈...〉 is just the pairing of the straight lines. The
non-zero contribution to 〈V 〉 is shown in Fig.20, where each closed loop is:∫

λk0<|k|<k0

dDk

(2π)D
G0(k) =

SD
(2π)D(D − 2)

k
(D−2)
0 (1− λ(D−2)) (7.80)

(here SD is the surface area of a unite D-dimensional sphere).
In what follows we are going to study the limit case of the small cutoff k0 (large spatial scales).

Besides, at each RG step the rescaling parameter λ will also be assumed to be small, such that in
all the integrations over the ”internal” k’s (λk0 < |k| < k0) the ”external” k’s (|k| < λk0) could be
considered as negligibly small.

The result for the first order perturbation expansion 〈V 〉 consists of three contributions. The
diagrams (a) and (c) in Fig.20 produce only irrelevant constants (they do not depend on φ̃). The
diagram (b) is proportional to |φ̃(k)|2 and gives the contribution to the mass term, but since this
contribution is proportional to k(D−2)

0 , in the asymptotic region k0 → 0 it could be ignored as well. In
fact we are going to look for the contributions, which: (1) do not depend on the value of the cutoff k0;
and (2) are large in the RG parameter ξ ≡ ln(1/λ)� 1.

Consider the second-order perturbation contribution 〈〈V 2〉〉 ≡ 〈V 2〉 − 〈V 〉2, Fig.21. Here the
diagrams (a), (c) and (i) give irrelevant constant. The diagrams (d), (g) and (h) are proportional to
the positive power of the cutoff k0 and therefore their contribution is small.

The relevant diagrams are (b), (e) and (f). The diagram (e) is proportional to:∫
|k|<λk0

dDk
(2π)D

|φ̃(k)|2
∫
λk0<|k1,2|<k0

dDk1d
Dk2G0(k1)G0(k2)G0(k + k1 + k2) =

∫
|k|<λk0

dDk
(2π)D

|φ̃(k)|2
∫
λk0<|k1,2|<k0

dDk1d
Dk2

k2
1k

2
2(k+k1+k2)2

(7.81)

since k � k1,2 the leading contribution in (7.81) is given by the first terms of the expansion in k/k1,2:

g2
∫
|k|<λk0

dDk
(2π)D

|φ̃(k)|2
∫
λk0<|k1,2|<k0

dDk1d
Dk2

k2
1k

2
2(k1+k2)2 +

+3g2
∫
|k|<λk0

dDk
(2π)D

|φ̃(k)|2k2
∫
λk0<|k1,2|<k0

dDk1d
Dk2

k2
1k

2
2(k1+k2)4

(7.82)

The first contribution in (7.82) is of the order of k(D−2)
0 is therefore irrelevant. As for the second

contribution, it could be easily checked that at dimension D = 4− ε, where ε� 1, the integration over
k1 and k2 does yield the factor proportional to ln(1/λ) � 1 independent of the cutoff k0. Therefore
this diagram gives finite contribution of the order of g2ln(1/λ) into ã, eq.(7.67). However, as will be
demonstrated below, the renormalized fixed-point value of g appears to be of the order of ε. It means
that the diagram in Fig.3(e) dives the contribution of the order of ε2ln(1/λ) in ã (which provides the
correction of the order of ε2 into the critical exponents). Therefore, until we study only the first-order
in ε corrections the contribution of the diagram (e) should not be taken into account:

ã = 1 +O(g2)ξ (7.83)

where ξ ≡ ln(1/λ).
The diagram (b) of the Fig.21 gives the following contribution:
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3
2gτ

∫
λk0<|k|<k0

dDk
(2π)D

1
k4

∫
|k|<λk0

dDk
(2π)D

|φ̃(k)|2 =

= 3
2gτ

SD
(2π)D

k
(D−4)
0 (1−λ(D−4))

D−4

∫
|k|<λk0

dDk
(2π)D

|φ̃(k)|2
(7.84)

For D = 4− ε, where ε� 1, this gives the finite contribution to the parameter τ̃ :

τ̃ = τ − 3
8π2

τgξ (7.85)

(we have taken SD=4 = 2π2)
For the diagram (f) of Fig.4 one gets:

9
4g

2
∫
λk0<|k|<k0

dDk
(2π)D

1
k4

∫
|k|<λk0

dDk1d
Dk2d

Dk3d
Dk4

(2π)4D φ̃(k1)φ̃(k2)φ̃(k3)φ̃(k4) =

= 9
4g

2 SD
(2π)D

k
(D−4)
0 (1−λ(D−4))

D−4

∫
|k|<λk0

dDk1d
Dk2d

Dk3d
Dk4

(2π)4D φ̃(k1)φ̃(k2)φ̃(k3)φ̃(k4)
(7.86)

For D = 4− ε this gives the following contribution to the parameter g̃:

g̃ = g − 9
8π2

g2ξ (7.87)

After the operation of rescaling to the original cutoff k0, according to the eqs.(7.71)-(7.72) for the
renormalized parameters τ (R) and g(R), we get:

τ (R) = (τ − 3
8π2 τgξ) exp(2ξ)

g(R) = (g − 9
8π2 g

2ξ) exp(εξ)
(7.88)

When gξ � 1 and εξ � 1, these equations can be written as follows:

ln(τ (R))− ln(τ) = 2ξ − 3
8π2 gξ

g(R) − g = εgξ − 9
8π2 g

2ξ
(7.89)

Assuming that the RG procedure is performed continuously, the evolution (as the scale changes)
of the renormalized parameters could be described in terms of the differential equations. From the
eqs.(7.89) one obtains:

dln|τ |
dξ

= 2− 3
8π2

g (7.90)

dg

dξ
= εg − 9

8π2
g2 (7.91)

The fixed point solution g∗ is defined by the condition dg
dξ = 0, which yields:

g∗ =
8π2

9
ε (7.92)

Then, from the eq.(7.90) for the scale dimension ∆τ one finds:

∆τ = 2− 1
3
ε (7.93)

Correspondingly, according to the eq.(7.60) for the critical exponent ν we obtains:

ν =
1
2

+
1
12
ε (7.94)

Since the fixed-point value g∗ is of the order of ε, according to eqs.(7.83), (7.68) and (7.69) there
are no corrections in the first order in ε to the scale dimensions ∆φ of the field φ. Accordingly (see
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eqs.(7.50), (7.49)), in the first order in ε the critical exponent η, eq.(7.28), of the correlation function
〈φ(0)φ(x)〉 remains zero, as in the Ginzburg-Landau theory.

Using relations (7.29)-(7.33), one can now easily find all the others critical exponents:

α = 1
6ε γ = 1 + 1

6ε β = 1
2 −

1
6ε

δ = 3 + ε µ = 1
3

(7.95)

Below we give the values of the critical exponents in the first order in ε formally continued for
the dimension D = 3 (ε = 1). These are compared with the corresponding values given by numerical
simulations and the Ginzburg-Landau theory:

ε-expansion Numerical Ginzburg-
Simulations Landau

Order parameter: β 0.333 0.312± 0.003 0.5
δ 4 5.15± 0.02 3

Specific heat: α 0.167 0.125± 0.015 0
Susceptibility: γ 1.167 1.250± 0.003 1
Correlation length ν 0.583 0.642± 0.003 0.5
Correlation function η 0 0.055± 0.010 0

(7.96)

For obtaining results in the second order in ε one proceeds in a similar way taking into account
next order in ε diagrams (see e.g. [25])

It is interesting to note that although the RG ε-expansion procedure described above is mathemat-
ically not well grounded, it provides rather accurate values for the critical exponents.

7.5 Specific heat singularity in four dimensions

Note also that although in dimensions D = 4 the critical exponent α is zero, it does not necessarily
mean that the specific heat is not singular at the critical point. Actually in this case the specific heat
is logarithmically (and not power-law) divergent. As a matter of useful exercise, let us calculate the
specific heat singularity for the four dimensions.

According to the definition of the specific heat (see eqs.(7.34),(7.35)) we have:

C = −T ∂
2f

∂T 2
=

1
V

∫
d4x

∫
d4x′〈〈φ2(x)φ2(x′)〉〉 =

∫
|x|<Rc(τ)

d4x〈〈φ2(0)φ2(x)〉〉 (7.97)

Here the upper cutoff in the spatial integration is taken to be the correlation length, Rc(τ) ∼ |τ |−1/2,
since at larger scales all the correlations decay exponentially. The integral in eq.(7.97) can be cal-
culated by summing up the so called ”parquette” diagrams [26] shown in Fig.22. The idea of the
”parquette” calculations is that all the contributions from the φ4 interactions in the correlation func-
tion 〈〈φ2(x)φ2(x′)〉〉 can be collected into the mass-like vertex m(ξ):

C '
∫
|k|>
√
τ

d4k
(2π)4G

2
0(k)(m(k)

τ )2 ∼
∫
|k|>
√
τ
dk
k (m(k)

τ )2 ∼

∼
∫
ξ<ln(1/τ)

dξ(m(ξ)
τ )2

(7.98)

Here the renormalization of the ”dressed” mass m(ξ) is defined by the diagram shown in Fig.22(b) (see
also eqs.(7.84)-(7.87)):

m(R) = m− 3mg
∫
λk0<|k|<k0

dDk

(2π)D
G2

0(k) → m− 3
8π2

mgξ (7.99)

where, as usual, ξ ≡ ln(1/λ). In differential form:

dm(ξ)
dξ

= − 3
8π2

m(ξ)g(ξ) (7.100)
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with initial conditions: m(ξ = 0) = τ . The renormalization of the interaction parameter g(ξ) for the
dimension D = 4 is defined by the RG eq.(7.91) with ε = 0:

dg(ξ)
dξ

= − 9
8π2

g2(ξ) (7.101)

The solution of the eqs.(7.100)-(7.101) is:

m(ξ) = τ(1 + 9g
8π2 ξ)−1/3

g(ξ) = g(1 + 9g
8π2 ξ)−1

(7.102)

where g ≡ g(ξ = 0). Then, for the specific heat, eq.(7.98), one gets:

C(τ) '
∫
ξ<ln(1/τ)

dξ

(1+ 9g
8π2 ξ)

2/3 =

= 8π2

3g [(1 + 9g
8π2 ln(1/τ))1/3 − 1]

(7.103)

This result demonstrates that there exists characteristic temperature interval:

τg ∼ exp(−8π2

9g
) � 1 (7.104)

such that at temperatures not too close to Tc, τg � |τ | � 1, the system is Gaussian (it does not
depend on the non-Gaussian interaction parameter g):

C(τ) ∼ ln(1/τ) (7.105)

This result could be easily obtained just in the framework of the Gaussian Ginzburg-Landau theory:

C(τ) ∼
∫
d4x〈〈φ2(0)φ2(x)〉〉 ∼

∫
|k|<1

d4k(k2 + τ)−2 ∼

∫ 1√
τ
d4k
k4 ∼ ln(1/τ)

(7.106)

On the other hand, in the close vicinity of the critical point (τ � τg) the theory becomes non-Gaussian,
and the result for the specific heat becomes less trivial:

C(τ) ∼ 1
g

(gln(1/τ))1/3 (7.107)

Thus, although the critical exponent α is zero for the 4-dimensional system, the specific heat still
remains (logarithmically) divergent at the critical point.

8 Critical Phenomena in Systems with Disorder

8.1 Harris Criterion

In the studies of the phase transition phenomena the systems considered before were assumed to
be perfectly homogeneous. In real physical systems, however, some defects or impurities are always
present. Therefore, it is natural to consider what effect impurities might have on the phase transition
phenomena. As we have seen in the previous Chapter, the thermodynamics of the second-order phase
transition is dominated by large scale fluctuations. The dominant scale, or the correlation length,
Rc ∼ |T/Tc − 1|−ν grows as T approach the critical temperature Tc, where it becomes infinite. The
large-scale fluctuations lead to singularities in the thermodynamical functions as |τ | ≡ |T/Tc− 1| → 0.
These singularities are the main subject of the theory.

If the concentration of impurities is small, their effect on the critical behavior remains negligible so
long as Rc is not too large, i.e. for T not too close to Tc. In this regime the critical behavior will be
essentially the same as in the perfect system. However, as |τ | → 0 (T → Tc) and Rc becomes larger
than the average distance between impurities, their influence can become crucial.
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As Tc is approached the following change of length scale takes place. First, the correlation length
of the fluctuations becomes much larger than the lattice spacing, and the system ”forgets” about
the lattice. The only relevant scale that remains in the system in this regime is the correlation length
Rc(τ). When we move close to the critical point, Rc grows and becomes larger than the average distance
between the impurities, so that the effective concentration of impurities, measured with respect to the
correlation length, becomes large. It should be stressed that such a situation is reached for an arbitrary
small initial concentration u. The value of u affects only on the width of the temperature region near
Tc in which the effective concentration becomes effectively large. If uRDc � 1 there are no grounds for
believing that the effect of impurities will be small.

Originally, many years ago, it was generally believed that impurities either completely destroy the
long range fluctuations, such that the singularities of the thermodynamical functions are smoothed out
[27], [28], or can produce only a shift of a critical point but cannot effect the critical behavior itself, so
that the critical exponents remain the same as in the pure system [29]. Later it was realized that an
intermediate situation is also possible, in which a new critical behavior, with new critical exponents,
is established sufficiently close to the phase transition point [30]. Moreover, a criterion, the so-called
Harris criterion, has also been developed, which makes it possible to predict qualitatively the effect of
impurities by using the critical exponents of the pure system only [28],[30]. According to this criterion
the impurities change the critical behavior only if the specific heat exponent α of the pure system is
positive (the specific heat of the pure system is divergent in the critical point). In the opposite case,
α < 0 (the specific heat if finite), the impurities appear to be irrelevant, i.e. their presence does not
affect the critical behavior.

Let us consider this point in more detail. It would be natural to assume that in the φ4-Hamiltonian
(Section 7.4) the presence of impurities manifests itself as small random spatial fluctuations of the
reduced transition temperature τ . Then near the phase transition point, the D-dimensional Ising-like
systems can be described in terms of the scalar field Ginzburg-Landau Hamiltonian with a double-well
potential:

H =
∫
dDx

[
1
2

(∇φ(x))2 +
1
2

[τ − δτ(x)]φ2(x) +
1
4
gφ4(x)

]
. (8.1)

Here the quenched disorder is described by random fluctuations of the effective transition temperature
δτ(x) whose probability distribution is taken to be symmetric and Gaussian:

P [δτ ] = p0 exp

(
− 1

4u

∫
dDx(δτ(x))2

)
, (8.2)

where u� 1 is the small parameter which describes the disorder, and p0 is the normalization constant.
For notational simplicity, we define the sign of δτ(x) in eq.(8.1) so that positive fluctuations lead to
locally ordered regions, whose effects are the object of our study.

Configurations of the fields φ(x) which correspond to local minima in H satisfy the saddle-point
equation:

−∆φ(x) + τφ(x) + gφ3(x) = δτ(x)φ(x) . (8.3)

Such localized solutions exist in regions of space where τ − δτ(x) assumes negative values. Clearly, the
solutions of Eq.(8.3) depend on a particular configuration of the function δτ(x) being inhomogeneous.
Let us estimate under which conditions the quenched fluctuations of the effective transition temperature
are the dominant factor for the local minima field configurations.

Let us consider a large region ΩL of a linear size L >> 1. The spatially average value of the function
δτ(x) in this region could be defined as follows:

δτ(ΩL) =
1
LD

∫
x∈ΩL

dDxδτ(x) . (8.4)

Correspondingly, for the characteristic value of the temperature fluctuations (averaged over realiza-
tions) in this region we get:

δτL =
√
δτ2(ΩL) =

√
2uL−D/2 . (8.5)
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Then, the average value of the order parameter φ(ΩL) in this region can be estimated from the equation:

τ + gφ2 = δτ(ΩL) . (8.6)

One can easily see that if the value of τ is sufficiently small, i. e. if

δτ(ΩL) >> τ (8.7)

then the solutions of Eq.(8.6) are defined only by the value of the random temperature:

φ(ΩL) ' ±(
δτ(ΩL)

g
)1/2 . (8.8)

Now let us estimate up to which sizes of locally ordered regions this may occur. According to Eq.(8.5)
the condition δτL >> τ yields:

L <<
u1/D

τ2/D
. (8.9)

On the other hand, the estimation of the order parameter in terms of the saddle-point equation (8.6)
could be correct only at scales much larger than the correlation length Rc ∼ τ−ν . Thus, one has the
lower bound for L:

L >> τ−ν . (8.10)

Therefore, quenched temperature fluctuations are relevant when

τ−ν <<
u1/D

τ2/D
(8.11)

or
τ2−νD << u . (8.12)

According to the scaling relations, eq.(2.55), one has 2 − νD = α. Thus one recovers the Harris
criterion: if the specific heat critical exponent of the pure system is positive, then in the temperature
interval,

τ < τ∗ ≡ u1/α (8.13)

the disorder becomes relevant. This argument identifies 1/α as the crossover exponent associated with
randomness.

A special consideration is required in the marginal situation α = 0. This is the case, for instance,
for the four-dimensional φ4-model (Section 7.5), or for the two-dimensional Ising model to be studied
in Chapter 5. The calculations show that although the critical exponent of the specific heat remains
zero in the impurity models, the logarithmic singularities are effected by the disorder.

8.2 Critical Exponents in the φ4-theory with Impurities

Consider a general case of weakly disordered p-component spin system, which near the critical point,
in the continuous limit can be described by the Hamiltonian (cf. eq.(8.1)):

H[δτ, φ] =
∫
dDx[

1
2

p∑
i=1

(∇φi(x))2 +
1
2

(τ − δτ(x))
p∑
i=1

φ2
i (x) +

1
4
g

p∑
i,j=1

φ2
i (x)φ2

j (x)] (8.14)

where the random quantity δτ(x) is described by the Gaussian distribution (8.2).
In terms of the replica approach (Section 1.3) we have to calculate the following replica partition

function:

Zn = (
∫
Dφi(x) exp{−H[δτ, φ]})n =

=
∫
Dδτ(x)

∫
Dφai (x) exp{− 1

4u

∫
dDx(δτ(x))2−

−
∫
dDx[ 1

2

∑p
i=1

∑n
a=1(∇φai (x))2 + 1

2 (τ − δτ(x))
∑p
i=1

∑n
a=1(φai (x))2+

+ 1
4g
∑p
i,j=1

∑n
a=1(φai (x))2(φaj (x))2]

(8.15)
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where the superscript a labels the replicas. (Here and in what follows all irrelevant pre-exponential
factors are omitted.) After Gaussian integration over δτ(x) one gets:

Zn =
∫
Dφai (x) exp{−

∫
dDx[ 1

2

∑p
i=1

∑n
a=1(∇φai (x))2 + 1

2τ
∑p
i=1

∑n
a=1(φai (x))2+

+ 1
4

∑p
i,j=1

∑n
a,b=1 gab(φ

a
i (x))2(φbj(x))2]

(8.16)

where

gab = gδab − u (8.17)

Now we shell calculate the critical exponents using the RG procedure developed in Section 7.4 for
dimension D = 4− ε assuming that ε� 1. Taking into account the vector and the replica components,
the φ4 interaction terms in the Hamiltonian (8.16) could be represented in terms of the diagram shown
in Fig.23.

If we proceeding similarly to the calculations of Section 7.4 we find that the (one-loop) renormal-
ization of the interaction parameters gab (Fig.23) are given by the diagrams shown in Fig.24. Taking
into account corresponding combinatoric factors one obtains the following contributions:

(a)→ g2
ab

∫
λk0<|k|<k0

dDk
(2π)D

G2
0(k)|ε�1 ' g2

ab
1

8π2 ln( 1
λ )

(b)→ 1
2 (gaa + gbb)gab

∫
λk0<|k|<k0

dDk
(2π)D

G2
0(k)|ε�1 ' 1

2 (gaa + gbb)gab 1
8π2 ln( 1

λ )

(c)→ p
4

∑n
c=1 gacgcb

∫
λk0<|k|<k0

dDk
(2π)D

G2
0(k)|ε�1 ' p

4

∑n
c=1 gacgcb

1
8π2 ln( 1

λ )

(8.18)

The corresponding RG equations are:

dgab
dξ

= εgab −
1

8π2
[4g2

ab + 2(gaa + gbb)gab + p
n∑
c=1

gacgcb] (8.19)

Taking into account the definition (8.17) one easily gets two RG equations for two interaction param-
eters g̃ ≡ gaa = g − u and ga6=b = −u:

dg̃
dξ = εg̃ − 1

8π2 [(8 + p)g̃2 + p(n− 1)u2]

u
dξ = εu− 1

8π2 [(4 + 2p)g̃u− (4 + p(n− 2))u2]
(8.20)

In the limit n→ 0 we obtain:

dg̃
dξ = εg̃ − 1

8π2 [(8 + p)g̃2 − pu2]

u
dξ = εu− 1

8π2 [(4 + 2p)g̃u− (4− 2p)u2]
(8.21)

Similarly, the renormalization of the ”mass” term τ(φai (x))2 is given by the diagrams shown in
Fig.25. Their contributions are:

(a)→ τgaa
∫
λk0<|k|<k0

dDk
(2π)D

G2
0(k)|ε�1 ' τgaa 1

8π2 ln( 1
λ )

(b)→ 1
2pτ

∑n
c=1 gca

∫
λk0<|k|<k0

dDk
(2π)D

G2
0(k)|ε�1 ' 1

2pτ
∑n
c=1 gca

p
8π2 ln( 1

λ )
(8.22)

Note that the above contributions does not depend on the replica index a (which for simplicity can be
taken to be, for example 1). The corresponding RG equation for the renormalized ”mass” τ is:

dln|τ |
dξ

= 2− 1
8π2

[2gaa + p

n∑
c=1

gca] (8.23)

In the limit n→ 0 we finally obtain:
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dlnτ
dξ

= 2− 1
8π2

[(2 + p)g̃(ξ) + pu(ξ)] (8.24)

where the renormalized interaction parameters g̃(ξ) and u(ξ) are defined by the eqs.(8.21).
The fixed-point values g̃∗ and u∗ are defined by the conditions dg̃∗

dξ = 0, du∗

dξ = 0, which according
to eqs.(8.21) yield:

(8 + p)g̃2 − pu2 = 8π2εg

(4 + 2p)g̃u− (4− 2p)u2 = 8π2εu
(8.25)

These equations have two non-trivial solutions:

g̃∗ =
8π2

p+ 8
ε ; u∗ = 0 (8.26)

and

g̃∗ = επ2 p

2(p− 1)
; u∗ = επ2 4− p

2(p− 1)
(8.27)

The first solution, eq.(8.26), describes the pure system without disorder. Using eq.(8.23) and the
relations (7.60), (7.29) for the critical exponents of the pure system (we mark them by the label ”(0)”)
one gets:

∆(0)
τ = 2− 1

8π2
(2 + p)g̃∗(0) = 2− 2 + p

8 + p
ε; ⇒ ν(0) =

1

∆(0)
τ

' 1
2

+
2 + p

4(8 + p)
ε (8.28)

α(0) = 2− (4− ε)ν(0) '
4− p

2(8 + p)
ε (8.29)

by using relations (7.29)-(7.33) the rest of the exponents are obtained automatically.
Simple analysis of the evolution trajectories defined by the RG eqs.(8.21) near the fixed points

(8.26) and (8.27) shows that the ”pure” fixed point (8.26) is stable only for p > 4. Note that the value
of u∗ in the other fixed point (8.27) becomes negative for p > 4, which means that this fixed-point
becomes essentially nonphysical, since the parameter u being a mean square value of the quenched
disorder fluctuations is only positively defined.

Thus, the critical behavior of the p-component vector system with p > 4 is not modified by the
presence of quenched disorder. It should be stressed that it is just the case when the specific heat
critical exponent α is negative, eq.(8.29), in accordance with the Harris criteria (Section 8.1).

For p < 4 the ”pure” fixed point (8.26) becomes unstable and the critical properties of the system
is defined by the ”random” fixed point given by eq.(8.27). Using eq.(8.23), one gets:

∆τ = 2− 1
8π2

[(2 + p)g̃∗ + pu∗] = 2− 3p
8(p− 1)

ε; ⇒ ν =
1

∆τ
' 1

2
+

3p
32(p− 1)

ε (8.30)

α = 2− (4− ε)ν ' − 4− p
8(p− 1)

ε (8.31)

where p must be greater than 1. The rest of the exponents are obtained automatically.
The case of the one-component system, p = 1, requires more detailed consideration, because for

p = 1 the equations (8.21) become degenerate. However, such degeneracy is the property only of the
first-order in ε approximation. It can be proved that taking into account next-order in ε diagrams the
degeneracy of the RG equations is removed. It can be shown then that a new ”random” fixed-point
of the RG equations exists for p = 1 as well, and in this case the corrections to the critical exponents
appear to be of the order of

√
ε [30]. We omit this analysis here because it is technically much more

cumbersome, while on a qualitative level it provides the results similar to those obtained above.
Thus, in agreement with the Harris criteria (Section 8.1) in the vector p-component system with

p < 4 the critical behavior is modified by the presence of quenched disorder. In the vicinity of the critical
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point a new critical regime appears, and it is described by a new set of (universal) critical exponents.
Note that the ”random” critical exponent of the specific heat (8.31) appears to be negative, unlike
that of the pure system. Therefore, the disorder makes the specific heat to be finite (although still
singular) at the critical point, unlike the divergent specific heat of the corresponding pure system.

It should be stressed however, that due to nonperturbative spin-glass phenomena the relevance to
real physics of the approach considered in this Section, although it is quite elegant and clear, may be
questioned (see next Chapter).

8.3 Critical behavior of the specific heat in four dimensions

In the full analogy with the corresponding considerations for the pure systems (eqs.(7.97) and (7.98),
Section 7.5) for the singular part of the specific heat at D = 4 we get:

C '
∫
|k|>
√
τ

d4k

(2π)4
G2

0(k)(
m(k)
τ

)2 ∼
∫
ξ<ln(1/τ)

dξ(
m(ξ)
τ

)2 (8.32)

Here the renormalization of the ”dressed” mass m(ξ) is defined by the ”parquette” diagrams of Fig.25.
Accordingly, the renormalizations of the interaction parameters g̃(ξ) and u(ξ) are defined by the RG
eqs.(8.21) with ε = 0:

dln|m|
dξ

= − 1
8π2

[(2 + p)g̃ + pu] (8.33)

dg̃

dξ
= − 1

8π2
[(8 + p)g̃2 − pu2] (8.34)

du

dξ
= − 1

8π2
[(4 + 2p)g̃u− (4− 2p)u2] (8.35)

The initial conditions are: m(ξ = 0) = τ, g̃(ξ = 0) = g0, u(ξ = 0) = u0.
In the pure system u = 0, and the solutions for m(ξ) and g̃(ξ) ≡ g(ξ) are:

g(ξ) = g0(1 + (8+p)g0
8π2 ξ)−1|ξ→∞ → ∼ 8π2

8+pξ
−1

m(ξ →∞) ∼ ξ−
2+p
8+p

(8.36)

Integration in the eq.(8.32) yields the following specific heat singularity:

C ∼ (ln(
1
τ

))
4−p
8+p (8.37)

For the system with nonzero disorder interaction parameter u, one finds the following asymptotic
(for ξ →∞) solutions of the eqs.(8.33)-(8.35):

g̃(ξ) ∼ π2 p

2(p− 1)
ξ−1; u(ξ) ∼ π2 (4− p)

2(p− 1)
ξ−1; m(ξ) ∼ ξ−

3p
8(p−1) (8.38)

Such solutions exist only for p < 4, otherwise u becomes formally negative which is the nonphysical
situation. Actually, in this case the vertex u(ξ) is getting zero at a finite scale ξ, and then, the
asymptotic solutions for m(ξ) and g̃(ξ) coincide with the those of the pure system.

The case of one-component field, p = 1, requires a special consideration. As the case of the
dimension D = 4 − ε (see above) one has to take into account second-order loop terms, which makes
the analysis rather cumbersome, and we do not consider it here. On a qualitative level, however, the
result for the specific heat appears to be similar to those for p < 4: the one-component system with
impurities exhibits new type of (logarithmic) singularity.

In the case p < 4, the integration in the eq.(8.32) yields:

C ∼ (ln(
1
τ

))−
4−p

4(p−1) (8.39)

It is interesting to note that although at the dimension D = 4 the critical exponent α of the specific
heat is zero, the Harris criterion, taken in the generalized form, still works. Namely, if the specific heat
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of the pure system is divergent at the critical point (the case of p < 4, eq.(8.37)), the disorder appears
to be relevant for the critical behavior, and change the behavior of the specific heat into a new type
of (universal) singularity (eq.(8.39)). Otherwise, if the specific heat of the pure system is finite at the
critical point (p > 4, eq.(8.37)), then the presence of the disorder does not modify the critical behavior.

9 Spin-Glass Effects in Critical Phenomena

9.1 Nonperturbative degrees of freedom

In this Chapter we consider non-trivial spin-glass (SG) effects produced by weak quenched disorder,
which have been ignored in the previous Chapter. It will be shown that these effects could dramatically
change the whole physical scenario of the critical phenomena.

According to the traditional point of view (considered in the previous Chapter) the effects produced
by weak quenched disorder in the critical region could be summarized as follows. If α, the specific
heat exponent of the pure system, is greater than zero (i.e. the specific heat of the pure system is
divergent at the critical point) the disorder is relevant for the critical behavior, and a new universal
critical regime, with new critical exponents, is established sufficiently close to the phase transition
point τ << τu ≡ u1/α. In contrast, when α < 0 (the specific heat is finite), the disorder appears to be
irrelevant, i.e. their presence does not affect the critical behavior. Actually, if the disorder is relevant
for the critical behavior, the situation could appear to be much more sophisticated. Let us consider
the physical motivation of the traditional RG approach in some more details.

Near the phase transition point the D-dimensional Ising-like systems are described in terms of the
scalar field Ginzburg-Landau Hamiltonian with a double-well potential:

H =
∫
dDx[

1
2

(∇φ(x))2 +
1
2

(τ − δτ(x))φ2(x) +
1
4
gφ4(x)]. (9.1)

Here, as usual, the quenched disorder is described by random fluctuations of the effective transition
temperature δτ(x) whose probability distribution is taken to be symmetric and Gaussian:

P [δτ ] = p0 exp{− 1
4u

∫
dDx(δτ(x))2}, (9.2)

where u� 1 is the small parameter which describes the disorder, and p0 is the normalization constant.
Now, if one is interested in the critical properties of the system, it is necessary to integrate over all

local field configurations up to the scale of the correlation length. This type of calculation is usually
performed using a Renormalization Group (RG) scheme, which self-consistently takes into account all
the fluctuations of the field on scale lengths up to Rc.

In order to derive the traditional results for the critical properties of this system one can use the
usual RG procedure developed for dimensions D = 4 − ε, where ε � 1. Then one finds that in the
presence of the quenched disorder the pure system fixed point becomes unstable, and the RG rescaling
trajectories arrive to another (universal) fixed point g∗ 6= 0; u∗ 6= 0, which yields the new critical
exponents describing the critical properties of the system with disorder.

However, there exists an important point which missing in the traditional approach. Consider the
ground state properties of the system described by the Hamiltonian (9.1). Configurations of the fields
φ(x) which correspond to local minima in H satisfy the saddle-point equation:

−∆φ(x) + (τ − δτ(x))φ(x) + gφ3(x) = 0 . (9.3)

Clearly, the solutions of this equations depend on a particular configuration of the function δτ(x)
being inhomogeneous. The localized solutions with non-zero value of φ exist in regions of space where
τ − δτ(x) has negative values. Moreover, one finds a macroscopic number of local minimum solutions
of the saddle-point equation (9.3). Indeed, for a given realization of the random function δτ(x) there
exists a macroscopic number of spatial ”islands” where τ − δτ(x) is negative (so that the local effective
temperature is below Tc), and in each of these ”islands” one finds two local minimum configurations of
the field: one which is ”up”, and another which is ”down”. These local minimum energy configurations
are separated by finite energy barriers, whose heights increase as the size of the ”islands” are increased.
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The problem is that the traditional RG approach is only a perturbative theory in which the devia-
tions of the field around the ground state configuration are treated, and it can not take into account
other local minimum configurations which are ”beyond barriers”. This problem does not arise in the
pure systems, where the solution of the saddle-point equation is unique. However, in a situation such
as that discussed above, when one gets numerous local minimum configurations separated by finite
barriers, the direct application of the traditional RG scheme may be questioned.

In a systematic approach one would like to integrate in an RG way over fluctuations around the
local minima configurations. Furthermore, one also has to sum over all these local minima up to the
scale of the correlation length. In view of the fact that the local minima configurations are defined by
the random quenched function δτ(x) in an essentially non-local way, the possibility of implementing
such a systematic approach successfully seems rather hopeless.

On the other hand there exists another technique which has been developed specifically for dealing
with systems which exhibit numerous local minima states. It is the Parisi Replica Symmetry Breaking
(RSB) scheme which has proved to be crucial in the mean-field theory of spin-glasses (see Chapters
3-5). Recent studies show that in certain cases the RSB approach can also be generalized for situations
where one has to deal with fluctuations as well [31],[32], [33]. Moreover, recently it has been shown
that the RSB technique can be applied successfully for the RG studies of the critical phenomena in
the Sine-Gordon model where remarkable instability of the RG flows with respect to the RSB modes
has been discovered [34].

It can be argued that the summation over multiple local minimum configurations in the present
problem could provide additional non-trivial RSB interaction potentials for the fluctuating fields [35].
Let us consider this point in some more details.

To carry out the appropriate average over quenched disorder one can use the standard replica
approach (Sections 1.3 and 8.2). This is accomplished by introducing the replicated partition function,
Zn ≡ Zn[δτ ] (see eq.(8.16)):

Zn =
∫
Dφa(x) exp{−

∫
dDx[ 1

2

∑n
a=1(∇φa(x))2 + 1

2τ
∑n
a=1 φ

2
a(x)

+ 1
4

∑n
a,b=1 gabφ

2
a(x)φ2

b(x)]},
(9.4)

where
gab = gδab − u . (9.5)

is the replica symmetric (RS) interaction parameter. If one would start the usual RG procedure for the
above replica Hamiltonian (as it is done in Section 8.2), then it would correspond to the perturbation
theory around the homogeneous ground state φ = 0.

However, in the situation when there exist numerous local minima solutions of the saddle-point
equation (9.3) we have to be more careful. Let us denote the local solutions of the eq.(9.3) by ψ(i)(x)
where i = 1, 2, . . . N0 labels the ”islands” where δτ(x) > τ . If the size L0 of an ”island” where
(δτ(x)−τ) > 0 is not too small, then the value of ψ(i)(x) in this ”island” should be ∼ ±

√
(δτ(x)− τ)/g,

where δτ(x) should now be interpreted as the value of δτ averaged over the region of size L0. Such
”islands” occur at a certain finite density per unit volume. Thus the value of N0 is macroscopic:
N0 = κV , where V is the volume of the system and κ is a constant. An approximate global extremal
solution Φ(x) is constructed as the union of all these local solutions, and each local solution can occur
with either sign:

Φ(α)[x; δτ(x)] =
κV∑
i=1

σiψ
(i)(x) , (9.6)

where each σi = ±1. Accordingly, the total number of global solutions must be 2κV . We label these
solutions by α = 1, 2, ...,K = 2κV . As mentioned earlier, it seems unlikely that an integration over
fluctuations around φ(x) = 0 will include the contributions from the configurations of φ(x) which are
near a Φ(x), since Φ(x) is ”beyond a barrier,” so to speak. Therefore, it seems appropriate to include
separately the contributions from small fluctuations about each of the many Φ(α)[x; δτ ]. Thus we have
to sum over the K global minimum solutions (non-perturbative degrees of freedom) Φ(α)[x; δτ ] and
also to integrate over ”smooth” fluctuations ϕ(x) around them
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Z[δτ ] =
∫
Dϕ(x)

∑K
α exp{−H[Φ(α) + ϕ; δτ ]}

=
∫
Dϕ(x) exp{−H[ϕ; δτ ]} × Z̃[ϕ; δτ ] ,

(9.7)

where

Z̃[ϕ; δτ ] =
K∑
α

exp{−Hα −
∫
dDx[

3
2
gΦ2

(α)(x; δτ)ϕ2(x) + gΦ(α)(x; δτ)ϕ3(x)]}, (9.8)

and Hα is the energy of the α-th solution.
Next we carry out the appropriate average over quenched disorder, and for the replica partition

function, Zn, we get:

Zn =
∫
DδτP [δτ ]

∫
Dϕa exp{−

n∑
a=1

H[ϕa; δτ ]} × Z̃n[ϕa; δτ ] , (9.9)

where the subscript a is a replica index and

Z̃n[ϕa; δτ ] =
K∑

α1...αn

exp{−
n∑
a

Hαa −
∫
dDx

n∑
a

[
3
2
gΦ2

(αa)(x; δτ)ϕ2
a(x) + gΦ(αa)(x; δτ)ϕ3

a(x)]}. (9.10)

It is clear that if the saddle-point solution is unique, from the eq.(9.9),(9.10) one would obtain the
usual RS representation (9.4),(9.5). However, in the case of the macroscopic number of local minimum
solutions the problem becomes highly non-trivial.

It is obviously hopeless to try to make a systematic evaluation of the above replicated partition
function. The global solutions Φ(α) are complicated implicit functions of δτ(x). These quantities have
fluctuations of two different types. In the first instance, they depend on the stochastic variables δτ(x).
But even when the δτ(x) are completely fixed, Φ(α)(x) will depend on α (which labels the possible
ways of constructing the global minimum out of the choices for the signs {σ} of the local minima).
A crude way of treating this situation is to regard the local solutions ψ(i)(x) as if they were random
variables, even though δτ(x) has been specified. This randomness, which one can see is not all that
different from that which exists in a spin glasses, is the crucial one. It can be shown then, that owing
to the interaction of the fluctuating fields with the local minima configurations (the term Φ2

(αa)ϕ
2
a in

the eq.(9.10)), the summation over solutions in the replica partition function Z̃n[ϕa], eq.(9.10), could
provide the additional non-trivial RSB potential∑

a,b

gabϕ
2
aϕ

2
b

in which the matrix gab has the Parisi RSB structure [35].
In this Chapter we are going to study the critical properties of weakly disordered systems in terms

of the RG approach taking into account the possibility of a general type of the RSB potentials for the
fluctuating fields. The idea is that hopefully, as in spin-glasses, this type of generalized RG scheme self-
consistently takes into account relevant degrees of freedom coming from the numerous local minima.
In particular, the instability of the traditional Replica Symmetric (RS) fixed points with respect to
RSB indicates that the multiplicity of the local minima can be relevant for the critical properties in
the fluctuation region.

It will be shown (in Section 9.2) that, whenever the disorder appears to be relevant for the critical
behavior, the usual RS fixed points (which used to be considered as providing new universal disorder-
induced critical exponents) are unstable with respect to ”turning on” an RSB potential. Moreover, it
will be shown that in the presence of a general type of the RSB potentials, the RG flows actually lead
to the so called strong coupling regime at the finite spatial scale R∗ ∼ exp(1/u) (which corresponds to
the temperature scale τ∗ ∼ exp(− 1

u )). At this scale the renormalized matrix gab develops strong RSB,
and the values of the interaction parameters are no longer non-small [36].
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Usually the strong coupling situation indicates that certain essentially non-perturbative excitations
have to be taken into account, and it could be argued that in the present model these are due to
exponentially rare ”instantons” in the spatial regions, where the value of δτ(x) ∼ 1, and the local
value of the field ϕ(x) must be ∼ ±1. (A distant analog of this situation exists in the two-dimensional
Heisenberg model where the Polyakov renormalization develops into the strong coupling regime at a
finite (exponentially large) scale which is known to be due to the nonlinear localized instanton solutions
[37]).

In Section 9.3 the physical consequences of the obtained RG solutions will be discussed. In particular
we show that due to the absence of fixed points at the disorder dominated scales R >> u−ν/α (or at
the corresponding temperature scales τ << u1/α) there must be no simple scaling of the correlation
functions or of other physical quantities. Besides, it is shown that the structure of the SG type two-
points correlation functions is characterized by the strong RSB, which indicates on the onset of a new
type of the critical behaviour of the SG nature.

The remaining problems as well as future perspectives are discussed in the Section 9.4. Particular
attention is given to the possible relevance of the considered RSB phenomena for the so called Griffith
phase which is known to exist in a finite temperature interval above Tc [39].

9.2 Replica symmetry breaking in the renormalization group theory

Let us again consider the p-component ferromagnet with quenched random effective temperature fluc-
tuations described by the usual Ginzburg-Landau Hamiltonian, eq.(8.14). In terms of the standard
replica approach after integration over the disorder variable δτ(x) for the corresponding replica Hamil-
tonian we get (see eq.(8.16)):

Hn =
∫
dDx[

1
2

p∑
i=1

n∑
a=1

(∇φai (x))2 +
1
2
τ

p∑
i=1

n∑
a=1

(φai (x))2 +
1
4

p∑
i,j=1

n∑
a,b=1

gab(φai (x))2(φbj(x))2], (9.11)

where gab = gδab − u.
Along the lines of the usual rescaling scheme for the dimension D = 4 − ε (Section 8.2) one gets

the following (one-loop) RG equations for the interaction parameters gab (see eq.(8.19)):

dgab
dξ

= εgab −
1

8π2
(4g2

ab + 2(gaa + gbb)gab + p
n∑
c=1

gacgcb) , (9.12)

where ξ is the standard rescaling parameter.
Changing gab → 8π2gab, and ga6=b → −ga6=b (so that the off-diagonal elements would be positively

defined), and introducing g̃ ≡ gaa, we get the following RG equations:

dgab
dξ

= εgab − (4 + 2p)g̃gab + 4g2
ab + p

n∑
c6=a,b

gacgcb (a 6= b), (9.13)

d

dξ
g̃ = εg̃ − (8 + p)g̃2 − p

n∑
c6=1

g2
1c (9.14)

If one takes the matrix gab to be replica symmetric, as in the starting form of eq.(9.5), then we
can recover the usual RG equations (8.21) for the parameters g̃ and u, and eventually obtain the old
results of Section 8.2 for the fixed points and the critical exponents. Here we leave apart the question
of how perturbations could arise out of the RS subspace (see also the discussion in [35]) and formally
consider the RG eqs.(9.13),(9.14) assuming that the matrix gab has a general Parisi RSB structure.

According to the standard technique of the Parisi RSB algebra (see Section 3.4), in the limit n→ 0
the matrix gab is parametrized in terms of its diagonal elements g̃ and the off-diagonal function g(x)
defined in the interval 0 < x < 1. All the operations with the matrices in this algebra can be performed
according to the following simple rules (see eqs.(3.39)-(3.43)):

gkab → (g̃k; gk(x)), (9.15)
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(ĝ2)ab ≡
n∑
c=1

gacgcb → (c̃; c(x)), (9.16)

where
c̃ = g̃2 −

∫ 1

0
dxg2(x),

c(x) = 2(g̃ −
∫ 1

0
dyg(y))g(x)−

∫ x
0
dy[g(x)− g(y)]2.

(9.17)

The RS situation corresponds to the case g(x) = const, independent of x.
Using the above rules, from the eqs.(9.13),(9.14) one gets:

d

dξ
g(x) = (ε− (4 + 2p)g̃)g(x) + 4g2(x)− 2pg(x)

∫ 1

0

dyg(y)− p
∫ x

0

dy(g(x)− g(y))2 (9.18)

d

dξ
g̃ = εg̃ − (8 + p)g̃2 + pg2 (9.19)

where g2 ≡
∫ 1

0
dxg2(x).

Usually in the studies of the critical behaviour one is looking for the stable fixed-points solutions of
the RG equations. The fixed-point values of the of the renormalized interaction parameters are believed
to describe the structure of the asymptotic Hamiltonian which allows us to calculate the singular part
of the free energy, as well as the other thermodynamic quantities.

From eq.(9.18) one can easily determine what should be the structure of the function g(x) at the
fixed point, d

dξ g(x) = 0, d
dξ g̃ = 0. Taking the derivative over x twice, one gets, from Eq.(9.18):

g′(x) = 0. This means that either the function g(x) is a constant (which is the RS situation), or
it has the step-like structure. It is interesting to note that the structure of fixed-point equations is
similar to those for the Parisi function q(x) near Tc in the Potts spin-glasses [38], and it is the term
g2(x) in eq.(9.18) which is known to produce 1step RSB solution there. The numerical solution of the
RG equations given above demonstrates convincingly that whenever the trial function g(x) has the
many-step RSB structure, it quickly develops into the 1-step one with the coordinate of the step being
the most right step of the original many-step function.

Let us consider the 1-step RSB ansatz for the function g(x):

g(x) =
{
g0 for 0 ≤ x < x0

g1 for x0 < x ≤ 1 (9.20)

where 0 ≤ x0 ≤ 1 is the coordinate of the step.
In terms of this ansatz from eqs.(9.18),(9.19) one easily gets the following fixed-point equations for

the parameters g1, g0 and g̃:

(4− 2px0)g2
0 − 2p(1− x0)g1g0 − (4 + 2p)g̃g0 + εg0 = 0

−px0g
2
0 + (4− 2p+ px0)g2

1 − (4 + 2p)g̃g1 + εg1 = 0

−px0g
2
0 − p(1− x0)g2

1 + (8 + p)g̃2 − εg̃ = 0.

(9.21)

These equations have several non-trivial solutions:

1) The RS fixed-point which corresponds to the pure system, eq.(8.26):

g0 = g1 = 0; g̃ =
1

8 + p
ε (9.22)

This fixed point (in accordance with the Harris criterion) is stable for the number of spin components
p > 4, and it becomes unstable for p < 4.

2) The ”random” RS fixed point, eq.(8.27), (for p > 1):

g0 = g1 = ε
4− p

16(p− 1)
; g̃ = ε

p

16(p− 1)
. (9.23)
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This fixed point was usually considered to be the one which describes the new universal critical be-
haviour in systems with impurities. This fixed point has been shown to be stable (with respect to
the RS deviations!) for p < 4, which is consistent with the Harris criterion. (For p = 1 this fixed
point involves an expansion in powers of (ε)1/2 and this structure is only revealed within a two-loop
approximation). However, the stability analysis with respect to the RSB deviations shows that this
fixed point is always unstable [35]. The three eigenvalues of the corresponding linearized equations
near this fixed point are:

λ1 = −1/2, λ2 = − (4− p)
8(p− 1)

, λ3 = +
(4− p)
8(p− 1)

so that one of these eigenvalues is always positive. Therefore, whenever the disorder is relevant for the
critical behaviour, the RSB perturbations must be the dominant factor in the asymptotic large scale
limit.

3) The 1-step RSB fixed point [35]:

g0 = 0; g1 = ε 4−p
16(p−1)−px0(8+p) ,

g̃ = ε p(1−x0)
16(p−1)−px0(8+p) .

(9.24)

This fixed point can be shown to be stable (within 1-step RSB subspace!) for:

1 < p < 4,

0 < x0 < xc(p) ≡ 16(p−1)
p(8+p) .

(9.25)

In particular, xc(p = 2) = 4/5; xc(p = 3) = 32/33, and xc(p = 4) = 1. Using the result given by
eq.(9.24) one can easily obtain the corresponding critical exponents which become non-universal as
they are dependent on the starting parameter x0 (see Section 9.3). (Note, that in addition to the
fixed points listed above there exist several other 1-step RSB solutions which are either unstable or
unphysical.)

The problem, however, is that if the parameter x0 of the starting function g(x; ξ = 0) (or, more
generally, the coordinate of the most right step of the many-steps starting function) is taken to be
beyond the stability interval, such that xc(p) < x0 < 1, then there exist no stable fixed points of the
RG eqs.(9.18),(9.19). One faces the same situation also in the case of a general continuous starting
function g(x; ξ = 0). Moreover, according to eq.(9.25) there exist no stable fixed points out of the RS
subspace in the most interesting Ising case, p = 1.

Unlike the RS situation for p = 1, where one finds the stable ∼
√
ε fixed point in the two-loop RG

equations, adding next order terms in the RG equations in the present case does not cure the problem.
In the RSB case one finds that in the two-loops RG equations the values of the parameters in the
fixed point are formally of the order of one, and this indicates that we are entering the strong coupling
regime where all the orders of the RG are getting relevant.

Nevertheless, to get at least some information about the physics behind this instability phenomena,
one can proceed to analyse the actual evolution of the above one-loop RG equations. The scale evolution
of the parameters of the Hamiltonian would still adequately describe the properties of the system until
we reach a critical scale ξ∗, at which the strong coupling regime begins.

The evolution of the renormalized function g(x; ξ) can be analyzed both numerically and ana-
lytically. It can be shown (see [36]) that in the case p < 4 for a general continuous starting func-
tion g(x; ξ = 0) ≡ g0(x) the renormalized function g(x; ξ) tends to zero everywhere in the interval
0 ≤ x < (1 −∆(ξ)), whereas in the narrow (scale dependent) interval ∆(ξ) near x = 1 the values of
the function g(x; ξ) increase:

g(x; ξ) ∼


a u

1−uξ ; at (1− x) << ∆(ξ)

0; at (1− x) >> ∆(ξ)
(9.26)
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g̃(ξ) ∼ uln
1

1− uξ
(9.27)

where
∆(ξ) ' (1− uξ) (9.28)

Here a is a positive non-universal constant, and the critical scale ξ∗ is defined by the condition that
the values of the renormalized parameters are getting of the order of one: (1− uξ∗) ∼ u, or ξ∗ ∼ 1/u.
Correspondingly, the spatial scale at which the system enters the strong coupling regime is:

R∗ ∼ exp(
1
u

) (9.29)

Note that the value of this scale is much greater than the usual crossover scale ∼ u−α/ν (where α and
ν are the pure system specific heat and the correlation length critical exponents), at which the disorder
is getting relevant for the critical behaviour.

According to the above result, the value of the narrow band near x = 1 where the function g(x; ξ)
is formally getting divergent is ∆(ξ) ' (1− uξ)→ u << 1 as ξ → ξ∗.

Besides, it can also be shown that the value of the integral

g(ξ) ≡
∫ 1

0

g(x; ξ)

becomes formally divergent logarithmically as ξ → ξ∗:

g(ξ) ∼ uln
1

1− uξ
(9.30)

Qualitatively similar asymptotic behaviour for g(x; ξ) is obtained for the case when the starting
function g0(x) has the 1-step RSB structure (9.20), and the coordinate of the step x0 is in the instability
region (or for any x0 in the Ising case p = 1):

g(x; ξ) ∼


g1(0)

1−(4−2p+px0)g1(0)ξ ; at x0 < x < 1

0; at 0 ≤ x < x0

(9.31)

Here g1(0) ≡ g1(ξ = 0) ∼ u, and the coefficient (4 − 2p + px0) is always positive. In this case again,
the system enters into the strong coupling regime at scales ξ ∼ 1/u.

Note that the above asymptotics do not explicitly involve ε. In fact the role of the parameter ε > 0
is to ”push” the RG trajectories out of the trivial Gaussian fixed point g = 0; g̃ = 0. Thus, the value
of ε, as well as the values of the starting parameters g0(x), g̃0, define a scale at which the solutions
finally enter the above asymptotic regime. When ε < 0 (above dimensions 4) the Gaussian fixed point
is stable; on the other hand, the strong coupling asymptotics still exists in this case as well, separated
from the trivial one by a finite (depending on the value of ε) barrier. Therefore, although infinitely
small disorder remains irrelevant for the critical behaviour above the dimension 4, if the disorder is
strong enough (bigger than some value depending on the ε threshold) the RG trajectories could enter
the strong coupling regime again.

9.3 Scaling properties and the replica symmetry breaking

9.3.1 Spatial and temperature scales

The renormalization of the mass term

τ(ξ)
n∑
a=1

φ2
a

is described by the following RG equation (see eq.(8.23)):

d

dξ
lnτ = 2− 1

8π2
[(2 + p)g̃ + p

n∑
a6=1

g1a] (9.32)
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Changing (as in the previous Section) gab → 8π2gab, and ga6=b → −ga6=b, in the Parisi representation
we get:

d

dξ
lnτ = 2− [(2 + p)g̃(ξ) + p

∫ 1

0

g(x; ξ)] (9.33)

or

τ(ξ) = τ0 exp{2ξ −
∫ ξ

0

dη[(2 + p)g̃(η) + pg(η)]} (9.34)

where g̃(η) and g(η) ≡
∫ 1

0
dxg(x; η) are the solutions of the RG equations of the previous Section.

Let us first consider the traditional (replica-symmetric) situation. The RS interaction parameters
g̃(ξ) and g(ξ) approach the fixed point values g̃∗ and g∗ (which are of the order of ε), and then for the
dependence of the renormalized mass τ(ξ), according to (9.34), one gets:

τ(ξ) = τ0 exp{∆τξ} (9.35)

where

∆τ = 2− [(2 + p)g̃∗ + pg∗] (9.36)

At scale ξc, such that τ(ξc) is getting of the order of one, the system gets out of the scaling region.
Since the RG scale parameter ξ = lnR, where R is the spatial scale, this defines the correlation length
Rc as a function of the reduced temperature τ0. According to (9.35), one obtains:

Rc(τ0) ∼ τ−ν0 (9.37)

where ν = 1/∆τ is the critical exponent of the correlation length.
Actually, if the starting value of the disorder parameter g(ξ = 0) ≡ u is much smaller than starting

value of the pure system interaction g̃(ξ = 0) ≡ g0, the situation is a little bit more complicated. In
this case the RG flow for g̃(ξ) first arrives at the pure system fixed point g̃(pure)

∗ , as if the disorder
perturbation does not exist. Then, since the pure fixed point is unstable with respect to the disorder
perturbations, at scales bigger than certain disorder dependent scale ξu the RG trajectories eventually
arrive at the stable (universal) ”random” fixed point (g̃∗, g∗). According to the traditional theory [30]
it is known that ξu ∼ ν

α ln 1
u . The corresponding spatial scale is Ru ∼ u−ν/α, and it is big it terms of

the small parameter u.
Coming back to the scaling behaviour of the mass parameter τ(ξ), eq.(9.35), we see that if the value

of the temperature τ0 is such that τ(ξ) is getting of the order of one before the crossover scale ξu is
reached, then for the scaling behaviour of the correlation length (as well as for other thermodynamic
quantities) one finds essentially the result Rc(τ0) ∼ τ

−ν(pure)
0 of the pure system. However, critical

behaviour of the pure system is observed only until Rc << Ru, which imposes the following restriction
on the temperature parameter: τ0 >> u1/α ≡ τu. In other words, at temperatures not too close to Tc,
τu << τ0 << 1, the presence of disorder is irrelevant for the critical behaviour.

On the other hand, if τ0 << τu (in the close vicinity of Tc), the RG trajectories for g̃(ξ) and
g(ξ) arrive (after crossover) at a new (universal) ”random” fixed point (g̃∗, g∗), and the scaling of
the correlation length (as well as other thermodynamic quantities), according to eqs.(9.37)-(9.36), is
controlled by a new universal critical exponent ν which is defined by the RS fixed point (g̃∗, g∗) of the
random system.

Consider now the situation if the RSB scenario occurred. Again, if the disorder parameter u is
small, in the temperature interval τu << τ0 << 1, the critical behaviour is essentially controlled by
the ”pure” fixed point, and the presence of disorder is irrelevant. For the same reasons as discussed
above, the system gets out of the scaling regime (τ(ξ) is getting of the order of one) before the disorder
parameters start ”pushing” the RG trajectories out of the pure system fixed point.

However, at temperatures τ0 << τu the situation is completely different from the RS case. If the
RG trajectories arrive at the 1-step RSB fixed point, eq.(9.24), (in the 1 < p < 4 case) then according
to the standard scaling relations for the critical exponent of the correlation length one finds:
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ν(x0) =
1
2

+
1
2
ε

3p(1− x0)
16(p− 1)− px0(p+ 8)

. (9.38)

Thus, depending on the value of the starting parameter x0 one finds a whole spectrum of the critical
exponents. Therefore, unlike the traditional point of view described in Section 8.2, the critical proper-
ties become non-universal, as they are dependent on the concrete statistical properties of the disorder
involved. However, this result is not the only consequence of the RSB. More essential effects can be
observed in the scaling properties of the spatial correlation functions (see below).

In the Ising case, p = 1, as well as in the systems with 1 < p < 4 for a general starting RSB
function g0(x), the consequences of the RSB appear to be much more dramatic. Here, at scales
ξ >> ξu (although still ξ << ξ∗ ∼ 1

u ) according to the solutions (9.26), (9.31) the parameters g̃(ξ) and
g(x; ξ), do not arrive at any fixed point, and they keep evolving as the scale ξ increases. Therefore,
in this case, according to eq.(9.34), the correlation length (defined, as usual, by the condition that the
renormalized τ(ξ) is getting of the order of one) is defined by the following non-trivial equation:

2lnRc −
∫ lnRc

0

dη[(2 + p)g̃(η) + pg(η)] = ln
1
τ0

(9.39)

Thus, as the temperature becomes sufficiently close to Tc (in the disorder dominated region τ0 << τu)
there will be no usual scaling dependence of the correlation length (as well as of other thermodynamic
quantities).

Finally, as the temperature parameter τ0 becomes smaller and smaller, what happens is that at
scale ξ∗ ≡ lnR∗ ∼ 1

u we enter the strong coupling regime (such that the parameters g̃(ξ) and g(x; ξ) are
no longer small), while the renormalized mass τ(ξ) remains still small. The corresponding crossover
temperature scale is:

τ∗ ∼ exp(−const
u

) (9.40)

In the close vicinity of Tc at τ << τ∗ we are facing the situation that at large scales the interaction
parameters of the asymptotic (zero-mass) Hamiltonian are no longer small, and the properties of the
system cannot be analysed in terms of simple one-loop RG approach. Nevertheless, the qualitative
structure of the asymptotic Hamiltonian allows us to argue that in the temperature interval τ << τ∗
near Tc the properties of the system should be essentially SG-like. The point is that it is the parameter
describing the disorder, g(x; ξ), which is the most divergent.

In a sense, here the problem is qualitatively reduced back to the original one with strong disorder
at the critical point. It doesn’t seem probable, however, that the state of the system will be described
by non-zero true SG order parameter Qab = 〈φaφb〉 (which would mean real SG freezing). Otherwise
there must exist finite value of τ at which real thermodynamic phase transition into the SG phase
takes place, whereas we observe only the crossover temperature τ∗, at which a change of critical regime
occurs.

It seems more realistic to expect that at scales ∼ ξ∗ the RG trajectories finally arrive to a fixed-point
characterized by non-small values of the interaction parameters and strong RSB. Then, the SG-like
behaviour of the system near Tc will be characterized by highly non-trivial critical properties exhibiting
strong RSB phenomena.

9.3.2 Correlation functions

Consider the scaling properties of the spin-glass-type connected correlation function:

K(R) = (〈φ(0)φ(R)〉 − 〈φ(0)〉〈φ(R)〉)2 ≡ 〈〈φ(0)φ(R)〉〉2 (9.41)

In terms of the replica formalism we get:

K(R) = lim
n→0

1
n(n− 1)

n∑
a6=b

Kab(R) (9.42)
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where

Kab(R) = 〈〈φa(0)φb(0)φa(R)φb(R)〉〉 (9.43)

In terms of the standard RG formalism for the replica correlation function Kab(R) we find that:

Kab(R) ∼ (G0(R))2(Zab(R))2 (9.44)

where

G0(R) = R−(D−2) (9.45)

is the free-field correlation function, and in the one-loop approximation the scaling of the mass-like
object Zab(R) (with a 6= b) is defined by the RG equation:

d

dξ
lnZab(ξ) = 2gab(ξ) (9.46)

Here ga6=b(ξ) > 0 is the solution of the corresponding RG equations (9.13)-(9.14), ξ = lnR, and
Zab(0) ≡ 1.

For the correlation function (9.44) one finds:

Kab(R) ∼ (G0(R))2 exp{4
∫ lnR

0

dξgab(ξ)} (9.47)

Correspondingly, in the Parisi representation: ga6=b(ξ)→ g(x; ξ) and Ka6=b(R)→ K(x;R), one gets:

K(x;R) ∼ (G0(R))2 exp{4
∫ lnR

0

dξg(x; ξ)} (9.48)

To understand the effects of the RSB more clearly let us again consider the situation in the tradi-
tional RS case. Here (for p < 4) one finds that the interaction parameter ga6=b(ξ) ≡ u(ξ) arrives at the
RS fixed point

u∗ = ε
4− p

16(p− 1)

and according to eqs.(9.47),(9.42) one obtains the simple scaling:

Krs(R) ∼ R−2(D−2)+θ (9.49)

with the universal ”random” critical exponent

θ = ε
4− p

4(p− 1)
(9.50)

In the case of the 1-step RSB fixed point, eq.(9.24), the situation is somewhat more complicated. Here
one finds that the correlation function K(x;R) also has 1-step RSB structure:

K(x;R) ∼
{
K0(R); for 0 ≤ x < x0

K1(R); for x0 < x ≤ 1 (9.51)

where (in the first order in ε)

K0(R) ∼ R−2(D−2) = G2
0(R)

K1(R) ∼ R−2(D−2)+θ1rsb

(9.52)

with the non-universal critical exponent θ1rsb explicitly depending on the coordinate of the step x0:

θ1rsb = ε
4(4− p)

16(p− 1)− px0(8 + p)
(9.53)

Since the critical exponent θ1rsb is positive, the leading contribution to the ”observable” quantity
K(R) = 〈〈φ(0)φ(R)〉〉2, eq.(9.42), is given by K1(R):

66



K(R) ∼ (1− x0)K1(R) + x0K0(R) ∼ R−2(D−2)+θ1rsb (9.54)

But the difference between the 1-step RSB the RS cases manifests itself not only in the result that
their critical exponents θ are different. According to the traditional SG philosophy (Chapter 4), the
result that the scaling of the RSB correlation function Kab(R) or K(x;R) does depend on the replica
indices (a, b) or the replica parameter x, eq.(9.51), indicates that in different measurements of the
correlation function for the same realization of the quenched disorder, one is going to obtain different
results, K0(R) or K1(R), with the probabilities defined by the value of x0.

In real experiments, however, one is dealing with the quantities averaged in space. In particular,
for the two-point correlation functions the measurable quantity is obtained by integration over the two
points, such that the distance R between them is fixed. Of course, the result obtained this way must be
equivalent simply to K(R), eq.(9.54), found by formal averaging over different realizations of disorder,
and different scalings K0(R) and K1(R) can not be observed this way.

Nevertheless, for somewhat different scheme of the measurements the qualitative difference with the
RS situation can be observed. In spin-glasses it is generally believed that RSB can be interpreted as
factorization of the phase space into (ultrametric) hierarchy of ”valleys”, or local minima pure states
separated by macroscopic barriers. Although in the present case the local minima configurations
responsible for the RSB can not be separated by infinite barriers, it would be natural to interpret
the phenomenon observed as effective factorization of the phase space into a hierarchy of valleys
separated by finite barriers. Since the only relevant scale in the critical region is the correlation length
the maximum energy barriers must be proportional to RDc (τ), and they are getting divergent as the
critical temperature is approached. In this situation, one could expect that besides the usual critical
slowing down (corresponding to the relaxation inside one valley) relaxation times which are qualitatively
much bigger would be required for overcoming barriers separated different valleys. Therefore, the
traditional measurements of the observables in the ”thermal equilibrium” can in fact correspond to
the equilibration within one valley only and not to the true thermal equilibrium. Then in different
measurements (for the same sample) one could be effectively ”trapped” in different valleys and thus
the traditional spin-glass situation is recovered.

To check whether the above speculations are correct or not, like in spin-glasses, one can invent
traditional ”overlap” quantities which could hopefully reveal the existence of the multiple valley struc-
tures. For instance, one can introduce the spatially averaged quantity for pairs of different realizations
of the disorder:

Kij(R) ≡ 1
V

∫
dDr〈φ(r)φ(r +R)〉i〈φ(r)φ(r +R)〉j (9.55)

where i and j denote different realizations, and it is assumed that the measurable thermal average
corresponds to a particular valley, and not to the true thermal average. If the RS situation occurs
(so that only one global valley exists), then for different pairs of realizations one will obtain the same
result given by eq.(9.49). On the other hand, in the case of the 1-step RSB, after obtaining statistics
over pairs of realizations for Kij(R) one will be getting the result K0(R) with the probability x0, and
K1(R) with the probability (1− x0).

Consider finally what would be the situation if a general type of the RSB takes place. According to
the qualitative solution (9.26)-(9.27), the function g(x; ξ) does not arrive at any fixed point at scales
ξ >> ξu ∼ ν

α ln 1
u . Therefore, at the disorder dominated scales R >> Ru ∼ u−ν/α >> 1 there must be

no scaling behaviour of the correlation function K(R). Near the critical scale ξ∗ ∼ 1/u the qualitative
behaviour of the solution g(x; ξ) is given by eq.(9.26). Therefore, according to eq.(9.48), near the
critical scale R∗ ∼ exp(1/u) for the correlation function K(x;R) one obtains:

K(x;R) ∼

 R−2(D−2)(1− ulnR)−4a ≡ K1(R); for (1− x) << ∆(R)

R−2(D−2) = G2
0(R) ≡ K0; for (1− x) >> ∆(R)

(9.56)

where ∆(R) = (1− ulnR)→ u << 1 as R→ R∗.
At the critical scale we have (1 − ulnR∗) ∼ u, and according to eq.(9.56) the shape of the replica

function K(x;R) must be ”quasi-1step”:
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K(x;R∗) ∼

 u−4a exp{− 2(D−2)
u } ≡ K∗1 ; for (1− x) << u

exp{− 2(D−2)
u } ≡ K∗0 ; for (1− x) >> u

(9.57)

According to the above discussion of the 1-step RSB case, the result given by eq.(9.57) could be
measured for the spatially averaged overlaps of the correlation functions Kij(R), eq.(9.55) in terms of
the statistics of the samples realizations. Then, for the correlation function Kij(R) one is expected
to obtain the value K1 with the small probability u and the value K0 with the probability (1 − u).
Although both values K∗1 and K∗0 are expected to be exponentially small, their ratio K∗1/K

∗
0 ∼ u−4a

must be large.
Finally, at scales R >> R∗ we enter into the strong coupling regime, where simple one-loop RG

approach can not no longer be used.

9.3.3 Specific heat

According to the standard procedure the leading singularity of the specific heat can be calculated as
follows:

C ∼
∫
dDR[〈φ2(0)φ2(R)〉 − 〈φ2(0)〉〈φ2(R)〉] (9.58)

In terms of the RG scheme for the correlation function:

W (R) ≡ 〈φ2(0)φ2(R)〉 − 〈φ2(0)〉〈φ2(R)〉 (9.59)

we get:

W (R) = (G0(R))2m2(R) (9.60)

where G0(R) = R−(D−2) is the free field two-point correlation function, and the mass-like object m(R)
is given by the solution of the following (one-loop) RG equation (c.f. eq.(9.33)):

d

dξ
lnm(ξ) = −[(2 + p)g̃(ξ)− p

n∑
a6=1

ga1(ξ)] (9.61)

Here, as usual, ξ = lnR, and the renormalized interaction parameters g̃(ξ) and ga6=b(ξ) are the solutions
of the replica RG equations (9.13)-(9.14). In the Parisi representation, ga6=b(ξ)→ g(x; ξ), one gets:

m(R) = exp{−(2 + p)
∫ lnR

0

dξg̃(ξ)− p
∫ lnR

0

dξ

∫ 1

0

dxg(x; ξ)} (9.62)

Then, after simple transformations for the singular part of the specific heat, eq.(9.58), we get:

C ∼
∫ ξmax

0

dξ exp{εξ − 2(2 + p)
∫ ξ

0

dηg̃(η)− 2p
∫ ξ

0

dηg(η)} (9.63)

where g(η) ≡
∫ 1

0
dxg(x; η). The infrared cut-off ξmax in (9.63) is the scale at which the system get out

of the scaling regime.
Usually ξmax is the scale at which the renormalized mass τ(ξ), eq.(9.34), is getting of the order of

one, and if the traditional scaling situation takes place, one finds that ξmax ∼ ln(1/τ0).
Again, let us first consider the situation in the traditional RS case. Here at scales ξ >> ξu ∼ ln(1/u)

(which correspond to the temperature region τ0 << τu ∼ uν/α) the renormalized parameters g̃(η) and
g(ξ) arrive at the universal fixed point g̃∗ = ε p

16(p−1) ; g∗ = ε 4−p
16(p−1) given by eq.(9.23), and according

to eq.(9.63) for the singular part of the specific heat we find that

C(τ0) ∼
∫ ln(1/τ0)

0

dξ exp{ξ[ε− 2(2 + p)g̃∗ − 2pg∗]} ∼ τ
ε 4−p

4(p−1)
0 (9.64)
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So that in the close vicinity of Tc one would expect to observe new universal disorder induced critical
behaviour with the negative specific heat critical exponent α = −ε 4−p

4(p−1) , eq.(3.40) (unlike positive α
in the corresponding pure system).

Similarly, if the scenario with the stable 1-step RSB fixed points takes place, then one finds that the
specific heat critical exponent α(x0) becomes non-universal, and depends explicitly on the coordinate
of the step x0 [35]:

α(x0) = −1
2
ε

(4− p)(4− px0)
16(p− 1)− px0(p+ 8)

. (9.65)

Again, (as for the critical exponent of the correlation length,) depending on the value of the parameter
x0 one finds a whole spectrum of the critical exponents. In particular, the possible values of the specific
heat critical exponent appear to be in the following band:

−∞ < α(x0) < −ε (4− p)
8(p− 1)

. (9.66)

The upper bound for α(x0) is achieved in the RS limit x0 → 0, and it coincides with the usual RS
result, eq.(8.31). On the other hand, as x0 tends to the ”border of stability” xc(p) of the 1-step RSB
fixed point, formally the specific heat critical exponent tends to −∞.

In the general RSB case the situation is completely different. Here in the disorder dominated region
τ∗ << τ0 << uν/α (which corresponds to scales ξu << ξ << ξ∗) the RG trajectories of the interaction
parameters g̃(ξ) and g(ξ) do not arrive at any fixed point, and according to eq.(9.64) one finds that
the specific heat becomes a complicated function of the temperature parameter τ0 which does not have
the traditional scaling form.

Finally, in the SG-like region in the close vicinity of Tc, where the interaction parameters g̃ and g
are finite, one finds that the integral over ξ in eq.(9.63) is convergent (so that the upper cutoff scale
ξmax becomes irrelevant). Thus, in this case one obtains the result that the ”would be singular part”
of the specific heat remains finite in the temperature interval ∼ τ∗ around Tc, so that the specific heat
becomes non-singular at the phase transition point.

9.4 Discussion

According to the results obtained in this Chapter, we can conclude that spontaneous replica symmetry
breaking coming from the interaction of the fluctuations with the multiple local minima solutions of
the mean-field equations has a dramatic effect on the renormalization group flows and on the critical
properties. In the systems with the number of spin components p < 4 the traditional RG flows at the
dimension D = 4− ε, which are usually considered as describing the disorder-induced universal critical
behavior, appear to be unstable with respect to the RSB potentials as found in spin glasses. For a
general type of the Parisi RSB structures there exists no stable fixed points, and the RG flows lead to
the strong coupling regime at the finite scale R∗ ∼ exp(1/u), where u is the small parameter describing
the disorder. Unlike the systems with 1 < p < 4, where there exist stable fixed points having 1-step
RSB structures, eq.(9.24), in the Ising case, p = 1, there exist no stable fixed points, and any RSB
interactions lead to the strong coupling regime.

There exists another general problem which may appear to be interconnected with the RSB phe-
nomena considered in this Chapter. The problem is related to the existence of the so-called Griffith
phase [39] in a finite temperature interval above Tc. Numerous experiments for various disordered
systems [40] as well as numerical simulations for the three-dimensional random bonds Ising model
[41] clearly demonstrate that in the temperature interval Tc < T < T0 (in the high temperature
phase) the time correlations decay as ∼ exp{−(t/τ)λ} instead of the usual exponential relaxation law
∼ exp{−t/τ} as it should be in the ordinary paramagnetic phase. Moreover, it is claimed that the
parameter λ is the temperature dependent exponent, which is less than unity at T = Tc and which
increases monotonically up to λ = 1 at T = T0. The temperature T0 is claimed to coincide with the
phase transition point of the corresponding pure system.

This phenomenon clearly demonstrates the existence of numerous metastable states separated by
finite barriers, their values forming infinite continuous spectrum, and it could be interconnected with
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a general idea that the critical phenomena should be described in terms of an infinite hierarchy of
correlation lengths and critical exponents [42].

On the other hand, if there is RSB in the fourth-order potential in the problem considered in this
Chapter, one could identify a phase with a different symmetry than the conventional paramagnetic
phase, and thus there would have to be a temperature TRSB at which this change in symmetry occurs.
Actually, the RSB situation is the property of the statistics of the saddle-point solutions only, and it
is clear that for large enough τ there must be no RSB. Therefore, one can try to solve the problem
of summing over saddle-point solutions for arbitrary τ , aiming to find finite value of τc at which the
RSB solution for this problem disappears. Of course, in general this problem is very difficult to solve,
but one can easily obtain an estimate for the value of τc (assuming that at τ = 0 the RSB situation
takes place). According to the qualitative study of this problem in the paper [35], the RSB solution
can occur only when the effective interactions between the ”islands”, (where the system is effectively
below Tc) is non-small. The islands are the regions where δτ(r) > τ . According to the Gaussian
distribution for δτ(r), the average distance between the ”islands” must be of the order of exp[−τ2/u],
so that the islands become sufficiently remote at τ >

√
u. The interaction between the islands decreases

exponentially with their separation. Therefore at τ >
√
u their interaction must be very weak, and

there must be no RSB.
Note now that the shift of Tc with respect to the corresponding pure system is also of the order of√

u. On the other hand, the existence of local solutions to the mean-field equations is reminiscent of the
Griffith phase which is claimed to be observed in the temperature interval between Tc of the disordered
system and Tc of the corresponding pure system. On these grounds it is tempting to associate the
(hypothetical) RSB transition in the statistics of the saddle-point solutions with the Griffith transition.
Correspondingly, it would also be natural to suggest that RSB phenomena discovered in the scaling
properties of weakly disordered systems could be associated with the Griffith effects.

The other key question which remains unanswered, is whether or not the obtained strong coupling
phenomena in the RG flows could be interpreted as the onset of a kind of the spin-glass phase near Tc.
Since it is the RSB interaction parameter describing disorder, g(x; ξ), which is the most divergent, it
is tempting to argue that in the temperature interval τ << τ∗ ∼ exp(−1/u) near Tc the properties of
the system should be essentially SG-like.

It should be stressed, however, that in the present study we observe only the crossover tempera-
ture τ∗, at which the change of the critical regime occurs, and it is hardly possible to associate this
temperature with any kind of phase transition. Therefore, if the RSB effects could indeed provide any
kind of true thermodynamic order parameter, then this must be true in a whole temperature interval
where the RSB potentials exist.

The true spin-glass order (in the traditional sense) arises from the onset of the nonzero order
parameter Qab(x) =< φa(x)φb(x) >; a 6= b, and, at least for the infinite-range model, Qab develops
the hierarchical dependence on replica indices (Chapter 3). In the present problem we only find that
the coupling matrix gab for the fluctuating fields develops strong RSB structure and its elements
become non-small at large scales. Therefore, it seems more realistic to interpret RSB strong coupling
phenomena discovered in the RG as a completely new type of the critical behaviour characterized by
strong SG-effects in the scaling properties rather then in the ground state.
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10 Two-Dimensional Ising Model with Disorder

10.1 Two-dimensional Ising systems

In the general theory of phase transitions the two-dimensional (2D) Ising model plays the prominent
role, as it is the simplest nontrivial lattice model with a known exact solution [43]. It is natural to
ask, therefore, what effects of quenched disorder is in this particular case. As for the Harris criterion
(Section 8.1) the 2D Ising model constitutes a special case, because the specific heat exponent α = 0
in this model. However, speaking intuitively, we could expect that like in the case of the vector field
model in four dimensions (Section 8.3), the effect of disorder could be predicted on a qualitative level.
Although the critical exponent α is zero, the specific heat of the 2D Ising model is (logarithmically)
divergent at the critical point. Therefore, we should expect the critical behavior of this system to be
strongly effected by the disorder.

Indeed, the exact solution for the critical behavior of the specific heat of the 2D Ising model with
a small concentration c � 1 of impurities [44] (see Section 10.3 below) yields the following result for
the singular part of the specific heat:

C(τ) ∼

 ln( 1
τ ) if τ∗ � |τ | � 1

1
c ln[ln( 1

τ )] if τ � τ∗
(10.1)

where τ∗ ∼ exp(−const/c) is the temperature scale at which a crossover from one critical behavior to
another takes place.

Thus, in the 2D Ising model, as well as in the 4D vector field system, the disorder is relevant.
However, unlike the vector field model, the specific heat of the 2D disordered Ising magnet remains
divergent at Tc, though the singularity is weakened. Another important property of the 2D Ising
model is that unlike the φ4 theory near four dimensions (Chapter 9), the spin-glass RSB phenomena
appear to be irrelevant for the critical behavior [52]. Thus, the result given by eq.(10.1) for the leading
singularity of the specific heat of the weakly disordered 2D Ising system must be exact.

In this Chapter the emphasis is laid not on the exact lattice expressions, but on their large-scale
asymptotics, i.e. we will be interested mainly in the critical long-range behavior because only that
is interesting for the general theory of phase transitions. It is well known that in the critical region
the 2D Ising model can be reduced to the free-fermion theory [45]. In Section 10.2 this reduction will
be demonstrated in very simple terms by means of the Grassman variables technique. The operator
language or the transfer matrix formalism will not be used, as they are not symmetric enough to
be applied to the model with disorder. The resulting continuum theory, to which the exact lattice
disordered model is equivalent in the critical region, appears to be simple enough, and its specific heat
critical behavior can be found exactly (Section 10.3).

The results of the recent numerical simulations are briefly described in Section 10.4. General
structure of the phase diagram of the disordered 2D Ising model is considered in Section 10.5.

10.2 The fermion solution

The partition function of the pure 2D Ising model is given by:

Z =
∑
σ

exp{β
∑
x,µ

σxσx+µ} (10.2)

Here {σx = ±1} are the Ising spins defined at lattice sites of a simple square lattice; x are integer
valued coordinates of the lattice sites, and µ = 1,2 are basic vectors of the lattice.

This partition function can be rewritten as follows:

Z =
∑
σ

∏
x,µ exp{βσxσx+µ} =

∑
σ

∏
x,µ(coshβ + σxσx+µ sinhβ) =

= (coshβ)V
∑
σ

∏
x,µ(1 + λσxσx+µ)

(10.3)

where V is the total number of the lattice bonds, and λ ≡ tanhβ. Expanding the product over the
lattice bonds in eq.(10.3) and averaging over the σ’s we obtain the following representation for the
partition function (the high temperature expansion):
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Z = (coshβ)V
∑
P

(λ)LP (10.4)

The summation here goes over configurations of closed paths P drawn on lattice links (Fig.26), and
LP is the total length of paths in a particular configuration P.

The summation in the eq.(10.4) could be performed exactly, and these calculations constitute the
classical exact solution for the 2D Ising model found by Sherman and Vdovichenko [46]. This solution
is well described in detail in textbooks (see e.g. [47]), and we do not consider it here.

Let us now consider an alternative approach to the calculations of the partition function in terms
of the so-called Grassmann variables (for detailed treatment of this new mathematics see [48]). The
Grassmann variables were first used for the 2D Ising model by Hurst and Green [49], and this approach
was later developed by a number of authors [50] (see also [44]). It appears that technically this method
enables the equations to be obtained in much simple way. We shall describe this formalism, recover the
equation for the partition function, eq.(10.4), and introduce some new notations which will be useful
for the problem with disorder.

Let us introduce the four-component Grassmann variables {ψα(x)} defined at the lattice sites {x},
where the superscript α = 1,2,3,4 indicates the four directions on the 2D square lattice (such that
3 ≡ −1 and 4 ≡ −2). All the {ψα(x)}’s and all their differentials {dψα(x)} are anticommuting
variables; by definition:

ψα(x)ψβ(y) = −ψβ(y)ψα(x)

(ψα(x))2 = 0

dψα(x)dψβ(y) = −dψβ(y)dψα(x)

dψα(x)ψβ(y) = −ψβ(y)dψα(x)

(10.5)

and the integration rules are defined as follows:∫
dψα(x) = 0∫
dψα(x)ψα(x) = −

∫
ψα(x)dψα(x) = 1

(10.6)

Let us consider the following partition function defined as an integral over all the Grassmann
variables of the 2D lattice system:

Z =
∫
Dψ exp{A[ψ]} (10.7)

Here the integration measure Dψ and the action A[ψ] are defined as follows:

Dψ =
∏
x

[
−dψ1(x)dψ2(x)dψ3(x)dψ4(x)

]
(10.8)

A[ψ] = −1
2

∑
x

ψ(x)ψ(x) +
1
2
λ
∑
x,α

ψ(x+ α)p̂αψ(x) (10.9)

The ”conjugated” variables ψ(x) are defined as follows:

ψα = ψγ(Ĉ−1)γα (10.10)

where

Ĉ =


0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0

 ; Ĉ−1 =


0 −1 1 −1
1 0 −1 1
−1 1 0 −1
1 −1 1 0

 (10.11)
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The vector matrix p̂α in eq.(10.9) is defined as follows:

p̂α = {

 1 0 0 0
1 0 0 0
0 0 0 0
−1 0 0 0

,
 0 1 0 0

0 1 0 0
0 1 0 0
0 0 0 0

,
 0 0 0 0

0 0 1 0
0 0 1 0
0 0 1 0

,
 0 0 0 −1

0 0 0 0
0 0 0 1
0 0 0 1

} (10.12)

More explicitly for the action A[ψ], eq.(10.9), one gets:

A[ψ] = − 1
2

∑
x ψ(x)Ĉ−1ψ(x) + 1

2λ
∑
x,α ψ(x+ α)Ĉ−1p̂αψ(x)

≡
∑
x

[
ψ3(x)ψ1(x) + ψ4(x)ψ2(x) + ψ1(x)ψ2(x) + ψ3(x)ψ4(x) + ψ2(x)ψ3(x) + ψ1(x)ψ4(x)

]
+

+λ
∑
x

[
ψ3(x+ 1)ψ1(x) + ψ4(x+ 2)ψ2(x)

]
(10.13)

Using the rules (10.5) and (10.6) one can easily check by direct calculations that the integration in
(10.7) with the integration measure (10.8) reproduces the high temperature expansion of the 2D Ising
model partition function (10.4) with λ = tanhβ.

Let us consider the Green function:

Gαβ(x, x′) = Z−1

∫
Dψ exp{A[ψ]}ψα(x)ψ

β
(x′) (10.14)

Simple (although cumbersome) calculations yield:

Gαβ(x, x′) = λ
∑
γ

ΛαγGγβ(x− γ, x′) + δx,x′δ
αβ (10.15)

where Λ̂ ≡
∑
α p̂α:

Λ̂ =


1 1 0 −1
1 1 1 0
0 1 1 1
−1 0 1 1

 (10.16)

If we perform a Fourier transformation of the equation (10.15), it acquires the following matrix form:

Ĝ(k) = (1̂− λΛ̂(k))−1 (10.17)

where

Λ̂(k) =
∑
α

exp{−ikα}p̂α =



exp(−ik1) exp(−ik2) 0 − exp(ik2)

exp(−ik1) exp(−ik2) exp(ik1) 0

0 exp(−ik2) exp(ik1) exp(ik2)

− exp(−ik1) 0 exp(ik1) exp(ik2)


(10.18)

It is obvious from eq.(10.17) that, if one of the eigenvalues of the matrix λΛ̂(k) becomes unity, it signals
a singularity. To find this point we first put the space momentum k = 0 (which corresponds to the
infinite spatial scale).

The four-valued indices of the Green function Gαβ are related to four possible directions on a
square lattice. Therefore, the idea is to perform the Fourier transformation over these angular degrees
of freedom. One can easily check that the matrix Λ̂(0) diagonalizes in the following representation:
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ψ±1/2 =
1
2



1

exp(±iπ4 )

exp(±iπ2 )

exp(±i 3π
4 )


, ψ±3/2 =

1
2



1

exp(±i 3π
4 )

exp(±i 3π
2 )

exp(±i 9π
4 )


(10.19)

The transformation matrix from the initial representation to the angular momentum (or spinor) rep-
resentation with the above basic vectors, has the form:

Û =
1
2


1 1 1 1
E E E3 E

3

E2 E
2

E6 E
6

E3 E
3

E9 E
9

, E = exp(i
π

4
), E = exp(−iπ

4
) (10.20)

In this representation we get:

λΛ̂′(0) = λÛ−1Λ̂(0)Û = λ


√

2 + 1 0 0 0
0

√
2 + 1 0 0

0 0 −
√

2 + 1 0
0 0 0 −

√
2 + 1

 (10.21)

There is a singularity in eq.(10.17) (at k → 0) when one of the eigenvalues of λΛ̂′ becomes unity.
From eq.(10.21) we can easily find the critical point of the 2D Ising model:

λc ≡ tanhβc =
1√

2 + 1
(10.22)

Another important point which follow from these considerations is that for the critical fluctuations
in the vicinity of the critical point only states ψ±1/2 (with the eigenvalues ' 1) are important. Indeed
it is easily checked (see below) that the correlation radius for ψ±1/2 goes to infinity as λ → λc, while
the correlations for ψ±3/2 are confined to lattice sizes.

Now, to describe the critical long-range fluctuations, which are responsible for the singularities in
the thermodynamical functions, we can expand eq.(10.17) near the point λ = λc. Using the explicit
expression (10.18), and retaining only the first powers of k and (λ− λc)/λc, one gets:

Ĝ(k) ' 2λ2
c

∆



τ − ik1
τ−ik1−ik2√

2
−ik2 − τ−ik1+ik2√

2

τ−ik1−ik2√
2

τ − ik2
τ+ik1−ik2√

2
ik1

−ik2
τ+ik1−ik2√

2
τ + ik1

τ+ik1+ik2√
2

− τ−ik1+ik2√
2

ik1
τ+ik1+ik2√

2
τ + ik2


(10.23)

Here

∆ = det[1̂− λΛ̂(k)] ' 2λ2
c(τ

2 + k2) (10.24)

and

τ ≡ 2
(λ− λc)
λc

(10.25)

In the spinor representation given by eq.(10.19) the asymptotic expression for eq.(10.23) simplifies to
the following compact form:
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Ĝsp(k) = Û−1Ĝ(k)Û ' 2
τ2 + k2



τ ik1 − k2 0 0

ik1 + k2 τ 0 0

0 0 0 0

0 0 0 0


(10.26)

The zero components here are ∼ k2, τ2. The non-zero 2× 2 block can be represented as:

Ŝ(k) = 2
τ + ik̂

τ2 + k2
(10.27)

Here

k̂ = k1γ̂1 + k2γ̂2; (10.28)

γ1 =
(

0 1
1 0

)
, γ2 =

(
0 i
−i 0

)
(10.29)

The result (10.27) is the Green function of the free (real) spinor field in two Euclidian dimensions
described by the Lagrangian:

Asp[ψ] = −1
4

∫
d2x[ψ∂̂ψ + τψψ] (10.30)

where ψ1 = ψ2, and ψ2 = −ψ1.
Using eq.(10.30) one immediately finds the logarithmic singularity of the specific heat of the 2D

Ising model:

Z '
∫
Dψ exp{Asp[ψ]} '

√
det(τ + ∂̂);

F ' −lnZ ' −Trln(τ + ∂̂) ' −
∫
d2kln(τ2 + k2) ∼ −τ2ln 1

|τ |

(10.31)

Hence

C ∼ − d2

dτ2
F (τ) ∼ ln

1
|τ |

(10.32)

10.3 Critical behavior in the disordered model

We turn now to the model with disorder. The partition function of the 2D disoreder Ising model is
given by:

Z(β) =
∑
σ

exp

(
β
∑
x,µ

Jxµσxσx+µ

)
(10.33)

where the coupling constant Jxµ on a particular lattice bond (x, µ) is equal to the regular value J with
probability (1− c), and to the impurity value J ′ 6= J with probability c. We impose no restriction on
J ′ but we shall require c� 1, so that the concentration of impurities is assumed to be small.

The Grassmann variables technique described in the previous Section can be applied to the model
with random lattice couplings as well. In this representation the partition function (10.33) is given by:

Z(β) =
∫
Dψ exp

[
−1

2

∑
x

ψ(x)ψ(x) + α
1
2

∑
x,µ

λxµψ(x+ µ)p̂µψ(x)

]
(10.34)
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where

λxµ =
{
λ = tanh(βJ) with probability 1− c
λ′ = tanh(βJ ′) with probability c (10.35)

It is easy to check by direct expansion in powers of the second term in (10.34) that the partition
function can be represented as a sum over configurations of closed loops, each loop entering with a
weight ∏

P
λxµΦ(P) (10.36)

where Φ(P) is an ordered product along the path P of matrices {p̂}:

Φ(P) =
∏
P
p̂ (10.37)

The same representation for the partition function comes from the high temperature expansion of
eq.(10.33).

Proceeding along these lines and averaging over the disorder in the couplings one could finally obtain
the exact continuum limit representation for the free energy of the impurity model (see [44]). Here,
however, we shall consider a more intuitive and much more simplified approach, which, nevertheless,
provides the same results as the exact one. This approach is based on the natural assumption that in
the continuum limit representation in terms of the free fermion fields (see previous Section) the disorder
in the couplings manifests itself as a small spatial disorder in the effective critical temperature τ in the
mass term of the spinor Lagrangian (10.30). Therefore, the starting point for further considerations
of the disordered model will be the assumption that its continuum limit representation is described by
the following spinor Lagrangian:

Aimp[ψ; δτ(x)] = −1
4

∫
d2x[ψ∂̂ψ + (τ + δτ(x))ψψ] (10.38)

Here the quenched random variable δτ(x) is assumed to be described by simple Gaussian distribution:

P [δτ(x)] =
∏
x

[
1√
8πu

exp{− (δτ(x))2

8u
}] (10.39)

where the small parameter u� 1 is proportional to the concentration of impurities.
Then, the self-averaging free energy can be obtained in terms of the traditional replica approach

(Section 1.3):

F ≡ F [δτ(x)] = − 1
β

lim
n→0

1
n

ln(Zn) (10.40)

where

Zn =
∫
Dδτ(x)

∫
DψaP [δτ(x)] exp

(
−1

4

∫
d2x

n∑
a=1

[ψa∂̂ψa + (τ + δτ(x))ψaψa]

)
(10.41)

is the replica partition function and the superscript a = 1, 2, ..., n denotes the replicas. Simple Gaussian
integration over δτ(x) yields:

Zn =
∫
Dψa exp{An[ψ]} (10.42)

where

An[ψ] = −
∫
d2x

1
4

n∑
a=1

ψa(∂̂ + τ)ψa − 1
4
u

n∑
a,b=1

ψaψaψbψb

 (10.43)
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Note that rigorous perturbative consideration of the original lattice problem [44] yields the same
result for the continuous limit effective Lagrangian (10.43), in which

u = c
(λ
′
c−λc
λc

)2

(1 + 1
2
√

2
(λ′c − λc))2

(10.44)

where

λc = tanhβcJ =
√

2− 1;

λ′c = tanhβcJ ′
(10.45)

The spinor-field theory with the four-fermion interaction (10.43) obtained above is renormalizable
in two dimensions, just as the vector field theory with the interaction φ4 is renormalizable in four
dimensions (Sections 7.5 and 8.3).

Indeed, after the scale transformation (see Section 7.3):

x → λx (λ > 1) (10.46)

one gets: ∫
dDxψ(x)∂̂ψ(x) → λD−1

∫
dDxψ(λx)∂̂ψ(λx)

u
∫
dDx(ψ(x)ψ(x))(ψ(x)ψ(x)) → λDu

∫
dDx(ψ(λx)ψ(λx))(ψ(λx)ψ(λx))

(10.47)

To leave the gradient term of the Hamiltonian (which is responsible for the scaling of the correlation
functions) unchanged, one has to rescale the fields:

ψ(λx) → λ−∆ψψ(x) (10.48)

with

∆ψ =
D − 1

2
(10.49)

The scale dimensions ∆ψ defines the critical exponent of the correlation function:

G(x) = 〈ψ(0)ψ(x)〉 ∼ |x|−2∆ψ |D=2 = |x|−1 (10.50)

To leave the Hamiltonian (10.43) unchanged after these transformations one has to rescale the param-
eter u:

u → λ−∆uu (10.51)

where

∆u = 2−D (10.52)

Therefore, the scale dimension ∆u of the four-fermion interaction term is zero in two dimensions, just
as the scale dimension of the φ4 interaction term is zero in four dimension.

We shall see below that the renormalization equations lead to the ”zero-charge” asymptotics for the
charge u and the mass τ . In this lucky case the critical behavior can be found by the renormalization
group methods or, in the same way, the main singularities of the thermodynamic functions can be
found by summing up the ”parquette” diagrams of the theory (10.43) (cf. Section 7.5)

Let us perform the renormalization of the charge u and the mass τ . The diagrammatic represen-
tation of the interaction u(ψa(x)ψa(x))(ψb(x)ψb(x)) and the mass τ(ψa(x)ψa(x)) terms are shown in
Fig.27. It should be stressed that the model under consideration is described in terms of real fermions,
and although we are using (just for convenience) the notation of the conjugated fields ψ they are not
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independent variables: ψ = ψγ̂5. For that reason the fermion lines in the diagram representation
are not be ”directed”. Actually, the interaction term (Fig.27) can be represented explicitly in terms
of only one two-component fermion (unticommuting) field: uψa1ψ

a
2ψ

b
1ψ

b
2. Therefore, the diagonal in

replica indeces (a = b) interaction terms are identically equal to zero.
Proceeding in a similar way to the calculations of Section 8.2 one then finds that the renormalization

of the parameter u is provided only by the diagram shown in Fig.28c, whereas the first two diagrams,
Fig.28a and 28b, are identically equal to zero. For the same reason the renormalization of the mass
term is provided only by the diagram shown in Fig.29b, while the diagram in Fig.29a is zero. The
internal lines in Figs.28 and 29 represent the massless free fermion Green function (cf. eqs.(10.27),
(10.28)):

Ŝab = −i k̂
k2
δab (10.53)

Taking into account corresponding combinatoric factors one easily obtains the following RG transfor-
mation for the scale dependent interaction parameter u(λ) and mass τ(λ):

u(R)(λ) = u+ 2(n− 2)u2

∫
λk0<|k|<k0

d2k

(2π)2
TrŜ2(k) (10.54)

τ (R)(λ) = τ + 2(n− 1)uτ
∫
λk0<|k|<k0

d2k

(2π)2
TrŜ2(k) (10.55)

Using eq.(10.53) after simple integration one gets the following RG equations (in the limit n→ 0):

u(ξ)
dξ

= − 2
π
u2(ξ) (10.56)

lnτ(ξ)
dξ

= − 1
π
u(ξ) (10.57)

where, as usual, ξ ≡ ln(1/λ) is the RG parameter. These equations can be easily solved and yield:

u(ξ) =
u

1 + 2u
π ξ

(10.58)

τ(ξ) =
τ

(1 + 2u
π ξ)

1/2
(10.59)

where u ≡ u(ξ = 0) and τ ≡ τ(ξ = 0). At large scales (ξ →∞)

u(ξ) ∼ 1
ξ
→ 0 ; τ(ξ) ∼ 1√

ξ
→ 0 (10.60)

The critical behavior of a model with the ”zero-charge” renormalization can be studied exactly by the
RG methods. In a standard way one obtains for the singular part of the specific heat (cf. Section 8.3):

C(τ) ' −1
2

∫
|k|>|τ |

d2k

(2π)2
TrŜ2(k)

(
τ(k)
τ

)2

=
1

4π

∫
ξ<ln(1/|τ |)

(
τ(ξ)
τ

)2

(10.61)

Here the mass is taken to be dependent on the scale in accordance with eq.(10.59):(
τ(ξ)
τ

)2

=
(

1 +
2u
π
ξ

)−1

(10.62)

Simple calculations yield:

C(τ) ' 1
8u

ln
[
1 +

2u
π

ln
(

1
|τ |

)]
(10.63)

From (10.63) we see that in the temperature range τu � τ � 1 where

τu ∼ exp(− π

2u
) (10.64)
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the specific heat has the well known logarithmic behavior of the pure 2D Ising model: C(τ) ∼ ln( 1
|τ | ).

However, in the close vicinity of the phase transition point, at |τ | � τu, the specific heat exhibits
different (universal) behavior:

C(τ) ∼ 1
u

lnln
(

1
|τ |

)
(10.65)

which is still singular, although the singularity is now weaker.
Note that the critical exponent of the two-point correlation function in the 2D Ising model is not

modified by the presence of disorder [51]:

〈σ0σx〉 ∼ |x|−1/4 (10.66)

This result is also convincingly confirmed by recent numerical simulations [55]-[57].
Note finally, that the effects of the replica symmetry breaking (Chapter 9) in the present case appear

to be irrelevant [52]. The corresponding calculations although straightforward, are rather cumbersome
and we do not reproduce them here. On the other hand, in the 2D Potts systems the disorder-induced
RSB effects can be shown to be relevant and provide the existence of a non-trivial stable fixed point
with continuous RSB (for details see [53]).

10.4 Numerical simulations

In recent years extensive numerical investigations on special purpose computers [54] have been per-
formed, with the aim of checking the theoretical results derived for the 2D Ising model with impurity
bonds [55],[56],[57]. In these studies, the calculations were performed for the model defined on a square
lattice of L× L spins with the Hamiltonian

H = −
∑
〈i,j〉

Jijσiσj (10.67)

where the nearest neighbor ferromagnetic couplings Jij are independent random variables taking two
values J and J ′ with probabilities 1− u and u correspondingly.

Since the critical behavior of the disordered system is believed to be universal and independent
on the concentration of impurities, it is much more convenient in numerical experiments to take the
concentration u to be non-small. The point is that according to the theory discussed in the previous
section, the parameter u defines the temperature scale τ∗(u) and correspondingly the spatial scale
L∗(u) ∼ exp{const/u}, eq.(10.64), at which the crossover to the disorder-induced critical behavior
takes place. At small concentrations, the crossover scale L∗ is exponentially large and it becomes
inaccessible in numerical experiments for finite systems. On the other hand, if both coupling constants
J and J ′ are ferromagnetic, then even for a finite concentration of impurity bonds the ferromagnetic
ground state (and the ferromagnetic phase transition) is not destroyed, whereas the crossover scale L∗
can be expected not to be very large.

Here we shall review only one set of numerical studies in which quite convincing results for the
specific heat singularity have been obtained [56]. The model with the concentration of the impurities
u = 1/2 has been studied. In this particular case the model given by eq.(10.67) appears to be selfdual,
and its critical temperature can be determined exactly from the equation [58]:

tanh(βcJ) = exp(−2βcJ ′) (10.68)

In the Monte Carlo simulations a cluster-flip algorithm of Swendsen and Wang [59] was used;
this algorithm overcomes the difficulty of critical slowing down. In one Monte Carlo sweep, the spin
configuration is decomposed into clusters constructed stochastically by connecting neighboring spins
of equal sign with the probability (1 − exp{−2βJij}). Each cluster is then flipped with probability
1/2. At Tc and for large lattices, the relaxation to equilibrium for this algorithm appears to be much
faster than for the standard single-spin-flip dynamics.

Technically it is much more convenient to calculate the maximum value of the specific heat as
the function of the size of the system, instead of the direct dependence of the specific heat from the
reduced temperature τ . Since the temperature and the spatial scales are in one to one correspondence
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(Rc(τ) ∼ τ−1 in the 2D Ising model), the minimum possible value for τ in a finite system of the size
L is τmin ∼ L−1. Therefore, the maximum value of the specific heat in the system which exhibits
the critical behavior C(τ) must be of the order of C(L−1). Then, according to eq.(10.63), the size
dependence of the specific heat in the disorder-induced critical regime, in the case of the 2D Ising
model, can be expected to be as follows:

C(L) = C0 + C1ln(1 + bln(L)) (10.69)

where C0 and C1 are some constants, and b = 1/ln(L∗), where L∗ is the finite size impurity crossover
length.

In general terms, the calculation procedure is as follows. First, one calculates the energy:

〈H〉 = − 1
L2

(
∑
〈i,j〉

Jij〈σiσj〉) (10.70)

where 〈...〉 denotes the thermal (Monte Carlo) average. Then the specific heat is obtained from the
energy fluctuations:

C(L) = L2(〈H2〉 − 〈H〉2) (10.71)

The simulations were performed for various ratious r = J ′/J = 1/10, 1/4, 1/2 and 1. The system sizes
ranged up to 600× 600. Figure 30 displays the data for the critical specific heat, as determined from
eq.(10.71) at r = 1/10, 1/4, 1/2 and 1, plotted against the logarithm of L. For the sake clarity, the
vertical axis has been scaled differently for various r.

For the perfect model, r = 1, the deviations from the exactly known asymptotic behavior are
obviously rather small for L ≥ 16, in agreement with the analytic results on the corrections to scaling
[60]. At r = 1/2 the size dependence data for L ≤ 128 are still in the perfect Ising regime, where
C ∼ ln(L). At r = 1/4 and r = 1/10 strong deviations from the logarithmic size dependence occur,
reflecting the crossover to the randomness-dominated region for sufficiently large values of L.

In Figure 31 the same data are shown plotted against lnln(L). Strong upwards curvature is evident
for r = 1 and 1/2, indicating the logarithmic increase. In notable contrast, the data for r = 1/4
approach a straight line for moderate values of L, and those for r = 1/10 seems to satisfy such
behavior even for small sizes, L ≥ 4. From fits to eq.(10.69), one obtains L∗ = 16± 4 at r = 1/4 and
L∗ = 2± 1 at r = 1/10. The general trends are certainly clear, and confirm the expected crossover to
a doubly logarithmic increase of C in the randomness-dominated region sets for smaller sizes L∗ as r
decreases.

Finally, in Fig.32 the same data for r = 1/4 are plotted against ln(1 + bln(L)), and exhibit a
perfectly straight line for all values of L.

Therefore, in accordance with the analytical predictions of the renormalization group calculations
(section 10.3), the results obtained in the Monte-Carlo simulations provide convincing evidences for
the onset of a new randomness-dominated critical regime. Besides, evidence is provided for a lnln(L)
dependence in the behavior of the specific heat at the critical point for sufficiently large system sizes.

10.5 General structure of the phase diagram

Let us consider a general structure of the phase diagram of the Ising spin systems with impurities.
Apparently, in a ferromagnetic system with antiferromagnetic or broken impurity bonds, as the con-
centration u of impurities increases, the ferromagnetic phase transition temperature Tc(u) decreases.
Then, at some finite concentration uc the ferromagnetic ground state could be completely destroyed,
and correspondingly the phase transition temperature should turn to zero: Tc(uc) = 0. On the basis
of these general arguments, one could guess that the qualitative phase diagram of such systems looks
like that shown in Fig.33 (for details, see e.g. [61], [62]). To the right of the line Tc(u), the system
is either in the paramagnetic state (at high enough temperatures) or in the spin-glass state [63]. The
second possibility depends however on the dimensionality of the system; at D = 2 the spin-glass state
is believed to be unstable at any non-zero temperature [64].

The critical phenomena considered in Section 10.3 formally correspond to the limit of small concen-
trations of impurities, i.e. they describe the properties of the phase transition near the upper left-hand
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side of the line Tc(u) in Fig.33. Nevertheless, the results obtained for the impurity-dominated critical
regime appear to be universal, as they are independent of the concentration of impurities (as well as
of the values of the impurity bonds). This makes it possible to believe that the critical phenomena
in the vicinity of the phase transition line Tc(u) must be the same for other concentrations which
are not small. The only parameter which does depend on the impurity concentration is the value of
the temperature interval near Tc(u), τ∗(u), where the impurity dominated critical phenomena occur.
According to the analytic theory of section 10.3 the value of this interval shrinks to zero as u → 0:
τ∗(u) ∼ exp{−const/u} → 0. At finite concentrations, this temperature interval becomes formally
finite, which indicates that the whole critical region near Tc(u) must be described by the impurity-
dominated critical regime.

On the other hand it is generally believed [61] that the bottom-right part of the phase transition
line Tc(u) (the region near the critical concentration u = uc, T � 1) belongs to another universality
class, which is different from the ferromagnetic phase transition at u � 1. For example, it is obvious
that in magnets with broken impurity bonds the phase transition as a function of the concentration
(at T � 1) at u = uc must be of the kind of the percolation transition which has nothing to do with
the ferromagnetic transition. It means that there must be a special point (T ∗, u∗) on the line Tc(u)
which separates two different critical regimes.

Actually, there does exist a special line, the so-called Nishimori line TN (u) [65], which crosses
the line Tc(u) at the point (T ∗, c∗) (Fig.34). There is no phase transition at the Nishimory line.
Formally it is special only in a sense that everywhere on this line the free energy as well as some other
thermodynamic quantities appear to be analytic functions of the temperature and the concentration.
Moreover, an explicit expression for free energy on the Nishimory line can be obtained for arbitrary T
and u at any dimensions. In fact, it makes the structure of the phase diagram much less trivial than
that shown in Fig.33. Let us consider this point in more detail.

For the sake of simplicity, let us consider the Ising ferromagnet

H = −
∑
〈i,j〉

Jijσiσj (10.72)

defined at a lattice with arbitrary structure, where the ferromagnetic spin-spin couplings Jij are equal
to 1, while the impurity antiferromagnetic ones are equal to −1, so that the statistical distribution of
the Jij ’s can be defined as follows:

P [Jij ] =
∏
〈i,j〉

[(1− u)δ(Jij − 1) + uδ(Jij + 1)] (10.73)

where u is the concentration of the impurity bonds. One can easily check that the statistical averaging
over configurations of the Jij ’s:

(...) =
∑

Jij=±1

∏
〈i,j〉

[(1− u)δ(Jij − 1) + uδ(Jij + 1)] (...) (10.74)

can be rewritten as follows:

(...) =
∑

Jij=±1

(2 cosh β̃(u))−Nb exp

β̃(u)
∑
〈i,j〉

Jij

 (...) (10.75)

where Nb is the total number of bonds in the system, and the impurity parameter β̃(u) is defined by
the equation:

exp{−2β̃(u)} =
u

1− u
(10.76)

For given values of the temperature T and the concentration u the average energy of the system is
defined as follows:
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E(c, T ) ≡ 〈H〉 =

= −(2 cosh β̃(u))−Nb
∑
Jij=±1 exp

(
β̃(u)

∑
〈i,j〉 Jij

) ∑
σ=±1

(∑
〈i,j〉

Jijσiσj

)
exp

(
β
∑
〈i,j〉

Jijσiσj

)
∑

σ=±1
exp

(
β
∑
〈i,j〉

Jijσiσj

)
(10.77)

It is obvious that the system under consideration is invariant under the local ”gauge” transformations:

σi → σisi

Jij → Jijsisj

(10.78)

for arbitrary si = ±1. Using the above gauge invariance the following trick can be performed. Let us
redefine the variables in eq.(10.77) according to (10.78) (which should leave the value of E unchanged),
and then let us ”average” the obtained expression for E over all configurations of si’s:

E(c, T ) = −(2 cosh β̃(u))−Nb2−N×

×
∑
Jij=±1

∑
s=±1 exp

(
β̃(u)

∑
〈i,j〉 Jijsisj

) ∑
σ=±1

(∑
〈i,j〉

Jijσiσj

)
exp

(
β
∑
〈i,j〉

Jijσiσj

)
∑

σ=±1
exp

(
β
∑
〈i,j〉

Jijσiσj

) (10.79)

One can easily see that the expression in eq.(10.79)

∑
s=±1

exp

β̃(u)
∑
〈i,j〉

Jijsisj

 ≡ Z[β̃(u), Jij ] (10.80)

is the partition function of the system at the temperature β̃(u). Therefore, if β̃(u) = β the partition
function (at the temperature β) in the denominator in the eq.(10.79) is cancelled by the partition
function (10.80). In this case the value of the average energy E (as well as the free energy) can be
calculated explicitly:

E(c, T ) = −(2 cosh β̃(u))−Nb2−N
∑
Jij=±1

∑
σ=±1

(∑
〈i,j〉 Jijσiσj

)
exp

(
β
∑
〈i,j〉 Jijσiσj

)
=

= −(2 cosh β̃(u))Nb2−N ∂
∂β

[∑
Jij=±1

∑
σ=±1 exp

(
β
∑
〈i,j〉 Jijσiσj

)]
=

= −Nb tanhβ(u)

= −Nb(1− 2u(T ))
(10.81)

The internal energy obtained is analytic for all values of the temperature and the concentration.
The above result is valid at the Nishimory line TN (u) defined by the condition β̃(u) = β:

TN (u) =
2

ln1−u
u

(10.82)

This line is shown qualitatively in Fig.34. It starts for the zero concentration (pure system) at T = 0,
and for u → 1/2 (completely disordered system) TN → ∞. Apparently, the Nishimory line must
cross the phase transition line Tc(u). This creates rather peculiar situation, because at the line of the
phase transition the thermodynamic functions should be non-analytic (for details, see [65]). Actually,
this crossection point, (T∗, u∗), is argued to be the multicritical point at which the paramagnetic,
ferromagnetic and spin-glass phases merge [66].
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For the Ising models of this type it can also be proved rigorously [65] that the ferromagnetic phase
does not exist for u > u∗, where u∗ is the point at which the Nishimory line crosses the boundary
between the paramagnetic and the ferromagnetic phases Tc(u) (Fig.34). (It means that the structure
of the naive phase diagram shown in Fig.33, in general, is not quite correct.) To prove this statement
let us consider the following two-point correlation function:

G(x) = 〈σ0σx〉β (10.83)

where 〈...〉β denotes the thermal average for a given temperature β. Using once again the above trick
with the gauge transformation (10.78) for the correlation function (10.83) one gets:

G(x) = (2 cosh β̃(u))−Nb
∑
Jij=±1 exp

(
β̃(u)

∑
〈i,j〉 Jij

) ∑
σ=±1

(σ0σx) exp

(
β
∑
〈i,j〉

Jijσiσj

)
∑

σ=±1
exp

(
β
∑
〈i,j〉

Jijσiσj

) =

= (2 cosh β̃(u))−Nb2−N×

×
∑
Jij=±1

∑
s=±1(s0sx) exp

(
β̃(u)

∑
〈i,j〉 Jijsisj

) ∑
σ=±1

(σ0σx) exp

(
β
∑
〈i,j〉

Jijσiσj

)
∑

σ=±1
exp

(
β
∑
〈i,j〉

Jijσiσj

) =

= (2 cosh β̃(u))−Nb2−N
∑
s′=±1

∑
Jij=±1 exp

(
β̃(u)

∑
〈i,j〉 Jijs

′
is
′
j

)
〈(s0sx)〉β̃(u)〈(σ0σx)〉β =

= 〈s0sx〉β̃(u)〈σ0σx〉β

(10.84)

Thus, the absolute value of the correlation function given by eq.(10.83) satisfies the condition:

|G(x)| = |〈σ0σx〉β | ≤ |〈s0sx〉β̃(u)| (10.85)

since the absolute value of any Ising (|σ| = 1) correlation function does not exceed one. Therefore
the absolute value of the two-point correlation function calculated at the temperature T and at the
impurity concentration u does not exceed the average of the absolute value of the corresponding
correlation function calculated at the Nishimori line at the same impurity concentration. This quantity
in the long-range limit |x| → ∞ vanishes if the corresponding point on the Nishimori line is in the
paramagnetic phase, which takes place for all concentrations u > u∗. On the other hand, the value of the
correlation function G(x) in the limit |x| → ∞ becomes the square of the ferromagnetic magnetization:
G(|x| → ∞) = m2(T, u). Thus, the above simple arguments prove that m(T, u) ≡ 0 for u > u∗.

Most probably, the boundary line between the ferromagnetic and non-ferromagnetic (spin-glass)
phases is vertical to the concentration axis as in Fig.34 [65], although the existence of the reentrant
phenomena cannot in general be excluded.

11 The Ising Systems with Quenched Random Fields

11.1 The model

In the previous Chapters we have considered the spin systems in which the quenched disorder was
introduced in a form of random fluctuations in the spin-spin interactions. There exists another class
of statistical models in which the disorder is present in a form of random magnetic fields. This type
of disorder is essentially different from that with fluctuating interactions since external magnetic fields
breaks the symmetry with respect to the change of the signs of the spins.

In the most simplified form the random field spin systems could be qualitatively described by the
following Ising Hamiltonian:
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H = −
N∑

<i6=j>

σiσj −
∑
i

hiσi (11.1)

where the Ising spins {σi = ±1} are placed in the vertices of a D-dimensional lattice with the ferromag-
netic interactions between the nearest neighbors, and the quenched random fields {hi} are described
by the symmetric Gaussian distribution:

P [hi] =
N∏
i

[
1√

2πh2
0

exp
(
− h2

i

2h2
0

)]
; h0 << 1 (11.2)

The best studied experimentally accessible realizations of systems of this type are the site diluted
antiferromagnets in a homogeneous magnetic field [67]. On a qualitative level this could be understood
as follows. An ordinary ordered antiferromagnetic system in the ground state is described by the
two sublattices, A and B, with magnetizations which are equal in magnitude and opposite in sign.
Dilution means that some of the spins chosen at random are removed from both sublattices. In the
zero external magnetic field the dilution along does not break symmetry between the two ground states
σA = −σB = ±1. However, if the external magnetic field h is nonzero, then an isolated missing spin
on the sublattice A provides the energy difference 2h between the two ground states σA = −σB = +1
and σA = −σB = −1.

Another example is absorbed monolayers with two ground states on impure substrates [68]. Here, if
one of the substrate lattice sites is occupied by a quenched impurity it prevents additional occupation
of this site, which effectively acts as a local symmetry breaking field. Other realizations are binary
liquids in porous media [69], and diluted frustrated antiferromagnets [70].

11.2 General arguments

Despite extensive theoretical and experimental efforts during last twenty years (for reviews see e.g.
[71]) there are few reliable statements for the problem of the random field Ising model. According to
simple physical arguments by Imry and Ma [72] one would expect that the dimensions above which
the ferromagnetic ground state is stable at low temperatures (it is called the lower critical dimension)
must be equal to 2. (Note, that for the Ising systems without random fields the low critical dimensions
is 1.) Indeed, if we try to reverse a large region Ω of linear size L, there are two competing effects: the
gain in energy due to the alignment with the random magnetic field, Eh, and the loss of energy due to
the creation of an interface, Ef . The first one scales as follows:

Eh ∼
√

(
∑
i∈Ω

hi)2 =
√∑
i,j∈Ω

hihj ∼ h0L
D/2 (11.3)

The second one is the energy of a domain wall which is proportional to the square of the boundary of
the region Ω:

Ef ∼ L(D−1) (11.4)

These estimates show that at dimensions 2 or lower for arbitrary small (but non-zero) value of the
field h0 the two energies are getting comparable for sufficiently large sizes L, and no spontaneous
magnetization should be present. On the other hand, at dimensions greater than 2, the energy at the
interface, Ef , is always bigger than Eh. Therefore this effect should not destroy the long range order
and a ferromagnetic transition should be present. This naive (but physically correct) argument was
later confirmed by a rigorous proof by Imbrie [73].

On the other hand, a perturbative study of the phase transition shows that, as far as the leading
large scale divergences are concerned, the strange phenomenon of a dimensional reduction is present,
such that the critical exponents of the system in the dimension D are the same as those of the ferro-
magnetic system without random fields in the dimension d=D-2 [74]. This result would imply that
the lower critical dimension is 3, in contradiction with the rigorous results. Actually, the procedure of
summing up the leading large scale divergences could give the correct result only if the Hamiltonian in
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the presence of the magnetic field has only one minimum. In this case the dimensional reduction can
be rigorously shown to be exact, by the use of supersymmetric arguments [75].

However, as soon as the temperature is close enough to the critical point, as well as in a low
temperature region, there are values of the magnetic field for which the free energy has more than
one minimum (this phenomenon is similar to that considered in Chapter 9). In this situation there is
no reason to believe that the supersymmetric approach should give the correct results and therefore
the dimensional reduction is not grounded. This is not surprising, because the dimensional reduction
completely misses the appearance of the Griffith’s singularities [39].

Recently it has also been shown that the existence of more that one solution of the stationary
equations in the presence of random fields is related, in the replica approach, to the existence of new
instanton-type solutions of the mean-field equations which are not invariant under translations in the
replica space [76].

11.3 Griffith phenomena in the low temperature region

In this Section simple physical arguments will be used to demonstrate the origin of the Griffith singu-
larities in the thermodynamical functions in the low-temperature (ordered) phase in the temperature
region h2

o << T << 1 for the dimensions D < 3 [77]. This non-perturbative contribution to the ther-
modynamics will be shown to come from rare, large spin clusters having characteristic size ∼

√
T/h0

with magnetization opposite to the ferromagnetic background, and which are the local minima of the
free energy.

If the dimension of the system is greater than 2, then the ground state spin configuration is fer-
romagnetic. The thermal excitations are the spin clusters with the magnetization opposite to the
background. If the linear size L of such cluster is large, then (in the continuous limit) the energy of
this thermal excitation could be estimated as follows:

E(L) ' LD−1 − V (L) (11.5)

where

V (L) =
∫
|x|<L

dDx h(x) (11.6)

The statistical distribution of the energy function V (L) (which is the energy of the spin cluster of
the size L in the random field h(x)) is:

P [V (L)] =
∫
Dh(x) exp

(
− 1

2h2
0

∫
dDxh2(x)

)∏
L

[
δ

(∫
|x|<L

dDxh(x)− V (L)

)]
(11.7)

(here and in what follows all kinds of the pre-exponential factors are omitted). For future calculations
it will be more convenient to deal with the quenched function V (L) instead of h(x). One can easily
derive an explicit expression for the distribution function P [V (L)], eq.(11.7) (for the sake of simplicity
the parameter L is first taken to be discrete):
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P [V (L)] =

=
[∏

x

∫ +∞
−∞ dh(x)

] (∏
i

∫ +∞
−∞ dξi

)
exp

[
− 1

2h2
0

∫
dDxh2(x) + i

∑
i ξi

(∫
|x|<Li d

Dxh(x)− V (Li)
)]

=

=
(∏

i

∫ +∞
−∞ dξi

)
exp [−i

∑
i ξiV (Li)]

[∏
x

∫ +∞
−∞ dh(x)

]
×

× exp
[
− 1

2h2
0

∫
dDxh2(x) + i

∑∞
i=1

∫
Li<|x|<Li+1

dDxh(x)
∑∞
j=i ξj

]
=

=
(∏

i

∫ +∞
−∞ dξi

)
exp

[
−i
∑
i ξiV (Li)− 1

2h
2
0

∑∞
i=1(LDi+1 − LDi )

(∑∞
j=i ξj

)2
]

=

exp
[
− 1

2h2
0

∑
i

[V (Li+1)−V (Li)]
2

LD
i+1−L

D
i

]
(11.8)

Making L continuous again, one finally gets:

P [V (L)] ' exp

[
− 1

2h2
0

∫
dL

1
LD−1

(
dV (L)
dL

)2
]

(11.9)

Since the probability of the flips of big spin clusters is exponentially small, their contributions to
the partition function could be assumed to be independent (it is assumed that such clusters are non-
interacting, as they are very far from each other). Then, their contribution to the total free energy
could be obtained from the statistical averaging of the free energy of one isolated cluster:

∆F = −T

[∏
L

∫
dV (L)

]
P [V (L)] log

(
1 +

∫ ∞
1

dL exp{β(V (L)− LD−1)}
)

(11.10)

Here the factor under the logarithm is the partition function obtained as a sum over all the sizes of
the flipped cluster (the factor ”1” is the contribution of the ordered state which is the state without
the flipped cluster).

The idea of the calculations of the free energy given above is described below. Since at dimensions
D > 2 the energy E(L) = LD−1 − V (L) is on average a function that increases with L, it would be
reasonable to expect that the deep local minima (if any) of this function are well separated and the
values of the energies at these minima increase with the size L. For this reason, let us assume that the
leading contribution in the integration over the sizes of the clusters in eq.(11.10) comes only from one
(if any) deepest local minimum of the function LD−1 − V (L) (for a given realization of the quenched
function V (L)).

Again, in view of the fact that the energy E(L) = LD−1−V (L) is, on average, the growing function
of L, the sufficient condition for existence of a minimum somewhere above a given size L is:

dV (L)
dL

> (D − 1)LD−2 (11.11)

By the use the above assumptions, the contribution to the free energy from the flipped clusters,
eq.(11.10), could be estimated as follows:

∆F ' −T
∫∞

1
dL
∫ +∞
−∞ dV PL(V )P

[
dV (L)
dL > (D − 1)LD−2

]
×

× log
[
1 + exp{β(V − LD−1)}

] (11.12)
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where PL(V ) is the probability of a given value of the energy V at a given size L, and

P

[
dV (L)
dL

> (D − 1)LD−2

]
is the probability that the condition (11.11) is satisfied at the unit length at the given size L. According
to eq.(11.6): V 2(L) ' h2

0L
D (for large values of L). Since the distribution PL(V ) must be Gaussian,

one gets:

PL(V ) ' exp{− V 2

2h2
0L

D
} (11.13)

Note that the above result can also be obtained by integrating the general distribution function
P [V (L)], eq.(11.9), over all the ”trajectories” V (L) with the fixed value V (L) = V at the given
length L.

The value of the probability P
[
dV (L)
dL > (D − 1)LD−2

]
could also be obtained by integrating

P [V (L)] over all the functions V (L) conditioned by dV (L)
dL > (D − 1)LD−2 (at the given value of

L ). It is clear, however, that with the exponential accuracy, the result of such an integration is defined
only by the lower bound (D−1)LD−2 for the derivative dV (L)/dL (at the given length L) in eq.(11.9).
Therefore, one gets:

P

[
dV (L)
dL

> (D − 1)LD−2

]
' exp

[
−
(
(D − 1)LD−2

)2
2h2

0L
D−1

]
= exp

[
− (D − 1)2LD−3

2h2
0

]
(11.14)

Note the important property of the energy E(L), which follows from the eqs.(11.13)-(11.14): although
at dimensions D > 2 the function E(L) increases with L, the probability of finding a local minimum
of this function at dimensions D < 3 also increases with L. It is the competition of these two effects
which produces the non-trivial contribution to be calculated below.

In the limit of low temperatures, T << 1 (although still T >> h2
0), the contribution to the free

energy, eq.(11.12), could be divided into two separate parts:

∆F = ∆F1 + ∆F2 '

−T
∫∞

1
dL
∫
V >LD−1 dV exp

[
− V 2

2h2
0L

D − (D−1)2LD−3

2h2
0

]
log(1 + exp{β(V − LD−1)}) −

−T
∫∞

1
dL
∫
V <LD−1 dV exp

[
− V 2

2h2
0L

D − (D−1)2LD−3

2h2
0

]
log(1 + exp{β(V − LD−1)})

(11.15)

The first one is the contribution from the minima which have negative energies (the excitations
which produce the gain in energy with respect to the ordered state). Here the leading contribution in
the integration over V comes from the limit V = LD−1, and in the leading order one gets:

∆F1 ∼ −T
∫ ∞

1

dL exp
[
−L

D−2

2h2
0

− (D − 1)2LD−3

2h2
0

]
(11.16)

For dimensions D > 2 the leading contribution to ∆F1 comes from L ∼ 1 and this take us back to the
Imry and Ma [72] arguments that there are no flipped big spin clusters which would produce the gain
in energy with respect to the ordered state.

The second contribution in eq.(11.15) comes from the local minima which have positive energies.
These could contribute to the free energy only as a thermal excitations at non-zero temperatures. In
the limit of low temperatures β >> 1 one can approximate:

log
[
1 + exp{β(V − LD−1)}

]
' exp

[
−β(LD−1 − V )

]
(11.17)

where LD−1 > V . Then, for ∆F2 one gets:
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∆F2 ' −T
∫ ∞

1

dL

∫ LD−1

−∞
dV exp

[
− V 2

2h2
0L

D
− (D − 1)2LD−3

2h2
0

+ βV − βLD−1

]
(11.18)

The main contribution in this integral also comes from the ”trivial” region L ∼ 1 and V ∼ βh2
0,

which corresponds to the ”elementary excitations” at scales of the lattice spacing. However, if the
temperature is not too low: βh2

0 << 1 and D < 3, there exists another non-trivial contribution which
comes from the vicinity of the saddle point:

V∗ = (βh2
0)LD∗

L∗ =
√

(D−1)(3−D)
2βh2

0
>> 1

(11.19)

which is separated from the region L ∼ 1, V ∼ βh2
0 by a large barrier. Note that the condition of

integration in eq.(11.18), V∗ << LD−1
∗ , according to eq.(11.19) is satisfied for L∗ << 1/βh2

0, which is
correct only if βh2

0 << 1.
For the contribution to the free energy at this saddle-point one gets:

∆F2 ∼ exp
[
−const

2h2
0

(βh2
0)

3−D
2

]
(11.20)

where

const =
1
2

(D + 1)(D − 1)
D−1

2 (
2

3−D
)

3−D
2 (11.21)

The result (11.20) demonstrates that in addition to the usual thermal excitations in the vicinity
of the ordered state (which could be taken into account by the traditional perturbation theory), due
to the interaction with the random fields there exist essentially non-perturbative large-scale thermal
excitations which produce exponentially small non-analytic contribution to the thermodynamics. These
excitations are large spin clusters with the magnetization opposite to the background which are the
local energy minima. At finite temperatures such that h2

o << T << 1 the characteristic size of the
clusters giving the leading contribution to the free energy is L∗ ∼

√
T/h0 >> 1.

This phenomenon, although seems to produce negligibly small contribution to the thermodynamical
functions, could be extremely important for understanding the dynamical relaxation processes. The
large clusters with reversed magnetization being the local minima, are separated from the ground
state by large energy barriers, and this could produce the essential slowing down of the relaxation
(see e.g. [78]). In particular, the characteristic ”saddle-point” clusters (eq.(11.19)) with the size
L∗(T ) ∼

√
T/h0 >> 1 are separated from the ground state by the energy barrier of the order of

V∗ ∼ (βh2
0)−(D−2)/2 >> 1, and the corresponding characteristic relaxation time at low temperatures

can be expected to be exponentially large:

τ(T ) ∼ exp
[
β(βh2

0)−
D−2

2

]
>> 1 (11.22)

However, in order to describe the time asymptotics of the relaxation processes one needs to know
the spectrum of the relaxation times (or the energy barriers), and this would require more special
consideration.

Unfortunately, the results obtained in this Section can not be applied directly for the dimension
D = 3, which appears to be marginal for the considered phenomena (at dimensions D > 3 this type
of the non-perturbative effects are absent). At D = 3 all those simple estimates for the energies and
probabilities of the cluster excitations which have been used in this Section (in particular, eq.(11.14))
do not work, and much more detailed analysis is required.

On the other hand, it seems quite reasonable to expect that the results obtained are correct at
dimensions D = 2 regardless of the fact that the long-range order in not stable there. The point is
that at D = 2 the correlation length at which the long-range order is destroyed is exponentially large
in the parameter 1/h0, whereas the characteristic size of the spin clusters considered here is only the
power of the parameter 1/h0. Therefore, at the scales at which the Griffith singularities (eq.(11.20))
appear, the system is still effectively ordered at D = 2.
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11.4 The phase transition

Nature of the phase transition in the random field Ising model is still a mystery. The only reliable
fact about it is that the upper critical dimensionality (the dimensionality above which the critical
phenomena are described by the mean-field theory, Section 7.1) for this phase transition is equal to 6
(unlike pure systems where it is equal to 4). Let us consider this point in some more details.

Near the phase transition the random field Ising model can be described in terms of the scalar field
Ginzburg-Landau Hamiltonian with the double-well potential:

H =
∫
dDx

[
1
2

(∇φ(x))2 +
1
2
τφ2(x)− h(x)φ(x) +

1
4
gφ4(x)

]
(11.23)

where quenched random fields h(x) are assumed to be described by the symmetric Gaussian distribution
with the mean square equal to h2

0. Ground state configurations of the fields φ(x) are defined by the
saddle-point equation:

−∆φ(x) + τφ(x) + gφ3(x) = h(x) (11.24)

In the usual RG approach for the phase transition in the pure systems (h(x) = 0) one constructs the
perturbation theory over large-scale deviations on the background homogeneous solution of the above
equation, φ0 =

√
|τ |/g, τ < 0 or φ0 = 0, τ > 0 (Section 7.4). Apparently, the solutions of the

equation (11.24) with nonzero h(x) essentially depend on a particular configuration of the quenched
fields being non-homogeneous. Let us estimate the conditions under which the external fields become
the dominant factor for the ground state configurations.

Let us consider a large region ΩL of a linear size L >> 1. An average value of the field in this
region can be defined as follows:

h(ΩL) =
1
LD

∫
x∈ΩL

dDxh(x) (11.25)

Correspondingly, for the characteristic value of the field h(ΩL) (averaged over realizations) one gets:

hL ≡
√
h2(ΩL) =

1
L2D

√∫
x,x′∈ΩL

dDxdDx′h(x)h(x′) =
h0

LD/2
(11.26)

The average value of the order parameter φ in a given region ΩL can be estimated from the equation:

τφ+ gφ3 = hL (11.27)

The solutions of this equation are:

φ ' φ0 +
hL
2τ
, if hL << τ3/2 (11.28)

φ ' (
hL
g

)1/3, if hL >> τ3/2 (11.29)

In the first case, eq.(11.28), the external fields can be considered as small perturbations, whereas
in the second case, eq.(11.29) the external fields are the dominant factor and the solution for the
order parameter does not depend on the temperature parameter τ . Now let us estimate up to which
characteristic sizes of the clusters the external fields could dominate. According to (11.26) the condition
h(ΩL) >> τ3/2, eq.(11.29), yields:

L <<
h

2/D
0

τ3/D
(11.30)

On the other hand, the estimation of the order parameter in terms of the equilibrium equation (11.27)
could be correct only at scales much greater than the size of the fluctuation region, which is equal to
the correlation length Rc ∼ τ−ν . Thus, one has the lower bound for L:

L >> τ−ν (11.31)
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Therefore the situation when the external fields become the dominant factor could exist in the region
of parameters defined by the condition:

τ−ν <<
h

2/D
0

τ3/D
(11.32)

or

τ3−νD << h2
0 (11.33)

Such region of temperatures near Tc exists only if:

νD < 3 (11.34)

In this case the temperature interval near Tc in which the order parameter configurations are defined
mainly by the random fields is:

τ∗(h0) ∼ h
2

3−νD
0 (11.35)

Outside this interval, τ >> τ∗ the external fields can be considered as small perturbations to the usual
critical phenomena.

In the mean field theory (which correctly describes the phase transition in the pure system for
D > 4) ν = 1/2. Thus, according to the condition (11.34) the above non-trivial temperature interval
τ∗ exists only at dimensions D < 6. Correspondingly, at dimensions D > 6 the phase transition is
correctly described by the usual mean-field theory.

What is going on in the close vicinity of the phase transition point, τ << τ∗(h0), at dimensions
D < 6 is not known. The only concrete statement for the critical behavior in the random field D-
dimensional Ising model worked out some years ago claims that its critical exponents coincide with
those of the pure (D − 2)-dimensional system [74]. Unfortunately, although it is very elegant, this
statement is wrong for the reasons mentioned in Section 11.2.

Indeed, let us turn back to the order parameter saddle-point equation (11.24). There exist strong
indications both theoretical [79],[76],[77] and numerical [80] in favor of the possibility of the existence of
many (macroscopic number) solution of this equation. Moreover, according to the numerical studies [80]
there exists another critical temperature T∗ above Tc such that at temperatures T > T∗ the solution of
the saddle-point equation (11.24) is unique (this region corresponds to the usual paramagnetic phase),
while at T < T∗ multiple solutions appear, and only below Tc the onset of the long range magnetic
order takes place. All these solutions must essentially depend on a particular configuration of the
quenched fields being non-homogeneous. In such a situation the usual RG approach, at least in its
traditional form (which is nothing else but the perturbation theory), can not be used.

It seems probable that we could find here again a kind of a completely new type of critical phe-
nomena of the spin-glass nature similar to that discussed in Chapter 9. As in spin-glasses [1],[2] one
could find here numerous disorder dependent local energy minima. Unlike in spin-glasses, however,
these minima are most probably separated by finite energy barriers. Therefore, it is hardly possible to
expect the existence of the real spin-glass phase near Tc. Nevertheless, it is widely believed that there
must be a kind of a ”glassy” phase in a finite temperature interval, which separates the paramagnetic
state at high temperatures from the ferromagnetic one at low temperatures [81],[82].

In the situation when the thermodynamics is defined by numerous disorder-dependent local energy
minima the most developed technique, which makes it possible to perform actual calculations, is the
Parisi replica symmetry breaking (RSB) scheme (Chapters 3 and 9). It is now many years since the
possibility of the RSB in the random field Ising systems was first discussed [82], [83]. Recently the RSB
technique has been successfully applied for the statistics of random manifolds [31], as well as for the
m-component (m >> 1) spin systems with random fields [32]. In the last case it has been rigorously
proved that the usual scaling replica-symmetric solution is unstable with respect to the RSB in the
phase transition point. Moreover, recent studies of the D-dimensional random field Ising systems,
made in terms of the Legendre transforms and the general scaling arguments, demonstrate that for
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D < 6 in a finite temperature interval near Tc a new type of the critical regime is established, which
is characterized by explicit RSB in the scaling of the correlation functions [84].

Although at the present state of knowledge is this field it would be very difficult to hypothesize
what could be the systematic approach to the problem, one of the possibilities is that the calculations
could still be done in a framework of the RG theory, in which the existing numerous solutions are
selfconsistently taken into account in terms of the explicit RSB in the parameters of the renormalized
Hamiltonian.

12 Conclusions

In this part of the Course we have considered the problem of the effects produced by weak quenched
disorder in statistical spin systems. The idea was to demonstrate on qualitative rather than quantitative
level the existing basic theoretical approaches and concepts. That is why the considerations were
restricted by the simplest statistical models, and most of the details of the theoretical and experimental
studies were left apart.

The key problem which still remains unsolved, is whether or not the obtained strong coupling
phenomena in the RG flows could be interpreted as the onset of a kind of the spin-glass phase in a
narrow temperature interval near Tc. In spin-glasses it is generally believed that RSB phenomenon
can be interpreted as a factorization of the phase space into the (ultrametric) hierarchy of ”valleys”,
or local minima pure states, separated by macroscopic (infinite) barriers. Although in the systems
considered here the local minima configurations responsible for the RSB are not likely to be separated
by infinite barriers, it would be natural to interpret phenomena obtained as effective factorization of
the phase space into a hierarchy of valleys separated by finite barriers. Since the only relevant scale
in the critical region is the correlation length, the maximum energy barriers must be proportional
to RDc (τ), and they become divergent as the critical temperature is approached. In this situation
one could expect that besides the usual critical slowing down (corresponding to the relaxation inside
one valley) qualitatively much greater (exponentially large) relaxation times would be required for
overcoming barriers separating different valleys. Therefore, the traditional measurements (made at
finite equilibration times) can actually correspond to the equilibration within one valley only, and not
to the true thermal equilibrium. Then in a close vicinity of the critical point different measurements of
the critical properties of, for example, spatial correlation functions (in the same sample) would exhibit
different results, as if the state of the system becomes effectively ”trapped” in different valleys. In any
case this phenomenon clearly demonstrates the existence of numerous metastable states forming infinite
continuous spectrum, and it could be interconnected with a general idea that the critical phenomena
should be described in terms of an infinite hierarchy of the correlation lengths and critical exponents.
Unfortunately at the present state of knowledge in this field it is very difficult to hypothesise what the
systematic approach for solving this type the problem should be .

It is now many years since, after the works of L.D.Landau and K.G.Wilson, the theory of the
second-order phase transitions has become quite respectable and well established science. It is generally
believed that no bright qualitative breakthrough can be expected in this field any more, and that the
only remaining problems are more and more exact calculations of the critical exponents. In a sense, the
theory of the disorder-induced critical phenomena has tried to attain a similar status. However, recent
developments in this field clearly indicate the existence of a qualitatively new physical phenomena,
which goes well beyond the traditional concepts of the scaling theory. It seems as if we are close to a
breakthrough to a new level of understanding of the critical phenomena in weakly disordered materials.
I do believe so. This is in fact the main reason why the present review has been written.
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Figure Captures

Fig.1. Free energy of the ferromagnetic Ising magnet:
(a) in the zero external magnetic field;
(b) in non-zero magnetic field.

Fig.2. The frustrations in the system of three spins:
(a) No frustration: the product of the interactions along the triangle is positive.
(b) The frustrated triangle: the product of the interactions along the triangle is negative.

Fig.3. The qualitative structure of the spin-glass free energy landscape at different temperatures.

Fig.4. The probability distribution function P (q):
(a) in the paramagnetic phase;
(b) in the ferromagnetic phase;
(c) in the spin glass phase.

Fig.5. The hierarchical tree of the spin glass states.

Fig.6. The structure of the matrix Qab at the one-step replica symmetry breaking.

Fig.7. The grouping of replicas at the two-steps replica symmetry breaking.

Fig.8. The tree-like definition of the matrix elements Qab for the two-steps RSB.

Fig.9. The explicit form of the matrix Qab for the two-steps RSB.

Fig.10. The qualitative shape of the functions q(x) and P (q):
(a) in the zero magnetic field near the critical point (τ << 1);
(b) in finite magnetic field h, for 0 < h < hc(T ) and τ << 1;
(c) in the zero magnetic field and in the limit of low temperatures, T << 1.

Fig.11. The ultrametric tree of the spin-glass states.

Fig.12. The relaxation behaviour of the magnetization in the field cooled aging experiments.

Fig.13. The relaxation behaviour of the magnetization in the zero field cooled aging experiments.

Fig.14. The relaxation behaviour of the magnetization in the aging experiments with the cooling
temperature cycles.

Fig.15. The relaxation behaviour of the magnetization in the aging experiments with the heating
temperature cycles.

Fig.16. The relaxation behaviour of the magnetization at the temperature T after the aging at the
temperature T −∆T .

Fig.17. The dependence of the values of the free energy barriers at the temperature T from their
values at the temperature T −∆T .

Fig.18. The dependence of d∆/dT from the values of the barriers ∆.
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Fig.19. Diagrammatic representation of the interaction energy V [φ̃, ϕ].

Fig.20. Diagrammatic representation of the first order perturbation contribution 〈V 〉.

Fig.21. Diagrammatic representation of the second order perturbation contribution 〈〈V 2〉〉.

Fig.22. (a) Diagrammatic representation of the specific heat.
(b) The diagram which contribute to the renormalization of the ”dressed” mass m(ξ).

Fig.23. Diagrammatic representation the interaction term gab(φai (x))2(φbj(x))2.

Fig.24. The diagrams which contribute to the interaction terms gab(φai (x))2(φbj(x))2.

Fig.25. The diagrams which contribute to the renormalization of the ”mass” term τ(φai (x))2.

Fig.26. Lattice graphs of the high temperature expansion of the 2D Ising model.

Fig.27. Diagrammatic representation the interaction term u(ψa(x)ψa(x))(ψb(x)ψb(x)) and the mass
term τ(ψa(x)ψa(x)).

Fig.28. The diagrams which contribute to interaction term u(ψa(x)ψa(x))(ψb(x)ψb(x)).

Fig.29. The diagrams which contribute to the mass term τ(ψa(x)ψa(x)).

Fig.30. The specific heat C at the critical temperature plotted as a function of lnL:
(1) the exact asymptotic result for the pure system, r = 1;
(2) r = 1/2 with fitting parameters C0 = 0.048, C1 = 15.7, b = 0.085;
(3) r = 1/4 with fitting parameters C0 = 0.048, C1 = 2.04, b = 0.35;
(4) r = 1/10 with fitting parameters C0 = −0.28, C1 = 0.224, b = 8.8.

Fig.31. The same set of data as in Fig.30, plotted against lnlnL.

Fig.32. The same set of data as in Fig.30 for r = 1/4, plotted against ln(1 + blnL) with b = 0.35.

Fig.33. A naive phase diagram of a ferromagnetic system diluted by antiferromagnetic or broken
couplings.

Fig.34. Phase diagram of the Ising ferromagnet diluted by antiferromagnetic couplings; TN (u) is
the Nishimory line.
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